Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/mobilevitv2
/modeling_mobilevitv2.py
# coding=utf-8 | |
# Copyright 2023 Apple Inc. and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE | |
"""PyTorch MobileViTV2 model.""" | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutputWithNoAttention, | |
BaseModelOutputWithPoolingAndNoAttention, | |
ImageClassifierOutputWithNoAttention, | |
SemanticSegmenterOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_mobilevitv2 import MobileViTV2Config | |
logger = logging.get_logger(__name__) | |
# General docstring | |
_CONFIG_FOR_DOC = "MobileViTV2Config" | |
# Base docstring | |
_CHECKPOINT_FOR_DOC = "apple/mobilevitv2-1.0-imagenet1k-256" | |
_EXPECTED_OUTPUT_SHAPE = [1, 512, 8, 8] | |
# Image classification docstring | |
_IMAGE_CLASS_CHECKPOINT = "apple/mobilevitv2-1.0-imagenet1k-256" | |
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" | |
# Copied from transformers.models.mobilevit.modeling_mobilevit.make_divisible | |
def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int: | |
""" | |
Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the | |
original TensorFlow repo. It can be seen here: | |
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py | |
""" | |
if min_value is None: | |
min_value = divisor | |
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) | |
# Make sure that round down does not go down by more than 10%. | |
if new_value < 0.9 * value: | |
new_value += divisor | |
return int(new_value) | |
def clip(value: float, min_val: float = float("-inf"), max_val: float = float("inf")) -> float: | |
return max(min_val, min(max_val, value)) | |
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTConvLayer with MobileViT->MobileViTV2 | |
class MobileViTV2ConvLayer(nn.Module): | |
def __init__( | |
self, | |
config: MobileViTV2Config, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int, | |
stride: int = 1, | |
groups: int = 1, | |
bias: bool = False, | |
dilation: int = 1, | |
use_normalization: bool = True, | |
use_activation: Union[bool, str] = True, | |
) -> None: | |
super().__init__() | |
padding = int((kernel_size - 1) / 2) * dilation | |
if in_channels % groups != 0: | |
raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") | |
if out_channels % groups != 0: | |
raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") | |
self.convolution = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
groups=groups, | |
bias=bias, | |
padding_mode="zeros", | |
) | |
if use_normalization: | |
self.normalization = nn.BatchNorm2d( | |
num_features=out_channels, | |
eps=1e-5, | |
momentum=0.1, | |
affine=True, | |
track_running_stats=True, | |
) | |
else: | |
self.normalization = None | |
if use_activation: | |
if isinstance(use_activation, str): | |
self.activation = ACT2FN[use_activation] | |
elif isinstance(config.hidden_act, str): | |
self.activation = ACT2FN[config.hidden_act] | |
else: | |
self.activation = config.hidden_act | |
else: | |
self.activation = None | |
def forward(self, features: torch.Tensor) -> torch.Tensor: | |
features = self.convolution(features) | |
if self.normalization is not None: | |
features = self.normalization(features) | |
if self.activation is not None: | |
features = self.activation(features) | |
return features | |
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTInvertedResidual with MobileViT->MobileViTV2 | |
class MobileViTV2InvertedResidual(nn.Module): | |
""" | |
Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381 | |
""" | |
def __init__( | |
self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int, dilation: int = 1 | |
) -> None: | |
super().__init__() | |
expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8) | |
if stride not in [1, 2]: | |
raise ValueError(f"Invalid stride {stride}.") | |
self.use_residual = (stride == 1) and (in_channels == out_channels) | |
self.expand_1x1 = MobileViTV2ConvLayer( | |
config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1 | |
) | |
self.conv_3x3 = MobileViTV2ConvLayer( | |
config, | |
in_channels=expanded_channels, | |
out_channels=expanded_channels, | |
kernel_size=3, | |
stride=stride, | |
groups=expanded_channels, | |
dilation=dilation, | |
) | |
self.reduce_1x1 = MobileViTV2ConvLayer( | |
config, | |
in_channels=expanded_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
use_activation=False, | |
) | |
def forward(self, features: torch.Tensor) -> torch.Tensor: | |
residual = features | |
features = self.expand_1x1(features) | |
features = self.conv_3x3(features) | |
features = self.reduce_1x1(features) | |
return residual + features if self.use_residual else features | |
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTMobileNetLayer with MobileViT->MobileViTV2 | |
class MobileViTV2MobileNetLayer(nn.Module): | |
def __init__( | |
self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1 | |
) -> None: | |
super().__init__() | |
self.layer = nn.ModuleList() | |
for i in range(num_stages): | |
layer = MobileViTV2InvertedResidual( | |
config, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
stride=stride if i == 0 else 1, | |
) | |
self.layer.append(layer) | |
in_channels = out_channels | |
def forward(self, features: torch.Tensor) -> torch.Tensor: | |
for layer_module in self.layer: | |
features = layer_module(features) | |
return features | |
class MobileViTV2LinearSelfAttention(nn.Module): | |
""" | |
This layer applies a self-attention with linear complexity, as described in MobileViTV2 paper: | |
https://arxiv.org/abs/2206.02680 | |
Args: | |
config (`MobileVitv2Config`): | |
Model configuration object | |
embed_dim (`int`): | |
`input_channels` from an expected input of size :math:`(batch_size, input_channels, height, width)` | |
""" | |
def __init__(self, config: MobileViTV2Config, embed_dim: int) -> None: | |
super().__init__() | |
self.qkv_proj = MobileViTV2ConvLayer( | |
config=config, | |
in_channels=embed_dim, | |
out_channels=1 + (2 * embed_dim), | |
bias=True, | |
kernel_size=1, | |
use_normalization=False, | |
use_activation=False, | |
) | |
self.attn_dropout = nn.Dropout(p=config.attn_dropout) | |
self.out_proj = MobileViTV2ConvLayer( | |
config=config, | |
in_channels=embed_dim, | |
out_channels=embed_dim, | |
bias=True, | |
kernel_size=1, | |
use_normalization=False, | |
use_activation=False, | |
) | |
self.embed_dim = embed_dim | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
# (batch_size, embed_dim, num_pixels_in_patch, num_patches) --> (batch_size, 1+2*embed_dim, num_pixels_in_patch, num_patches) | |
qkv = self.qkv_proj(hidden_states) | |
# Project hidden_states into query, key and value | |
# Query --> [batch_size, 1, num_pixels_in_patch, num_patches] | |
# value, key --> [batch_size, embed_dim, num_pixels_in_patch, num_patches] | |
query, key, value = torch.split(qkv, split_size_or_sections=[1, self.embed_dim, self.embed_dim], dim=1) | |
# apply softmax along num_patches dimension | |
context_scores = torch.nn.functional.softmax(query, dim=-1) | |
context_scores = self.attn_dropout(context_scores) | |
# Compute context vector | |
# [batch_size, embed_dim, num_pixels_in_patch, num_patches] x [batch_size, 1, num_pixels_in_patch, num_patches] -> [batch_size, embed_dim, num_pixels_in_patch, num_patches] | |
context_vector = key * context_scores | |
# [batch_size, embed_dim, num_pixels_in_patch, num_patches] --> [batch_size, embed_dim, num_pixels_in_patch, 1] | |
context_vector = torch.sum(context_vector, dim=-1, keepdim=True) | |
# combine context vector with values | |
# [batch_size, embed_dim, num_pixels_in_patch, num_patches] * [batch_size, embed_dim, num_pixels_in_patch, 1] --> [batch_size, embed_dim, num_pixels_in_patch, num_patches] | |
out = torch.nn.functional.relu(value) * context_vector.expand_as(value) | |
out = self.out_proj(out) | |
return out | |
class MobileViTV2FFN(nn.Module): | |
def __init__( | |
self, | |
config: MobileViTV2Config, | |
embed_dim: int, | |
ffn_latent_dim: int, | |
ffn_dropout: float = 0.0, | |
) -> None: | |
super().__init__() | |
self.conv1 = MobileViTV2ConvLayer( | |
config=config, | |
in_channels=embed_dim, | |
out_channels=ffn_latent_dim, | |
kernel_size=1, | |
stride=1, | |
bias=True, | |
use_normalization=False, | |
use_activation=True, | |
) | |
self.dropout1 = nn.Dropout(ffn_dropout) | |
self.conv2 = MobileViTV2ConvLayer( | |
config=config, | |
in_channels=ffn_latent_dim, | |
out_channels=embed_dim, | |
kernel_size=1, | |
stride=1, | |
bias=True, | |
use_normalization=False, | |
use_activation=False, | |
) | |
self.dropout2 = nn.Dropout(ffn_dropout) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.conv1(hidden_states) | |
hidden_states = self.dropout1(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
hidden_states = self.dropout2(hidden_states) | |
return hidden_states | |
class MobileViTV2TransformerLayer(nn.Module): | |
def __init__( | |
self, | |
config: MobileViTV2Config, | |
embed_dim: int, | |
ffn_latent_dim: int, | |
dropout: float = 0.0, | |
) -> None: | |
super().__init__() | |
self.layernorm_before = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps) | |
self.attention = MobileViTV2LinearSelfAttention(config, embed_dim) | |
self.dropout1 = nn.Dropout(p=dropout) | |
self.layernorm_after = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps) | |
self.ffn = MobileViTV2FFN(config, embed_dim, ffn_latent_dim, config.ffn_dropout) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
layernorm_1_out = self.layernorm_before(hidden_states) | |
attention_output = self.attention(layernorm_1_out) | |
hidden_states = attention_output + hidden_states | |
layer_output = self.layernorm_after(hidden_states) | |
layer_output = self.ffn(layer_output) | |
layer_output = layer_output + hidden_states | |
return layer_output | |
class MobileViTV2Transformer(nn.Module): | |
def __init__(self, config: MobileViTV2Config, n_layers: int, d_model: int) -> None: | |
super().__init__() | |
ffn_multiplier = config.ffn_multiplier | |
ffn_dims = [ffn_multiplier * d_model] * n_layers | |
# ensure that dims are multiple of 16 | |
ffn_dims = [int((d // 16) * 16) for d in ffn_dims] | |
self.layer = nn.ModuleList() | |
for block_idx in range(n_layers): | |
transformer_layer = MobileViTV2TransformerLayer( | |
config, embed_dim=d_model, ffn_latent_dim=ffn_dims[block_idx] | |
) | |
self.layer.append(transformer_layer) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
for layer_module in self.layer: | |
hidden_states = layer_module(hidden_states) | |
return hidden_states | |
class MobileViTV2Layer(nn.Module): | |
""" | |
MobileViTV2 layer: https://arxiv.org/abs/2206.02680 | |
""" | |
def __init__( | |
self, | |
config: MobileViTV2Config, | |
in_channels: int, | |
out_channels: int, | |
attn_unit_dim: int, | |
n_attn_blocks: int = 2, | |
dilation: int = 1, | |
stride: int = 2, | |
) -> None: | |
super().__init__() | |
self.patch_width = config.patch_size | |
self.patch_height = config.patch_size | |
cnn_out_dim = attn_unit_dim | |
if stride == 2: | |
self.downsampling_layer = MobileViTV2InvertedResidual( | |
config, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
stride=stride if dilation == 1 else 1, | |
dilation=dilation // 2 if dilation > 1 else 1, | |
) | |
in_channels = out_channels | |
else: | |
self.downsampling_layer = None | |
# Local representations | |
self.conv_kxk = MobileViTV2ConvLayer( | |
config, | |
in_channels=in_channels, | |
out_channels=in_channels, | |
kernel_size=config.conv_kernel_size, | |
groups=in_channels, | |
) | |
self.conv_1x1 = MobileViTV2ConvLayer( | |
config, | |
in_channels=in_channels, | |
out_channels=cnn_out_dim, | |
kernel_size=1, | |
use_normalization=False, | |
use_activation=False, | |
) | |
# Global representations | |
self.transformer = MobileViTV2Transformer(config, d_model=attn_unit_dim, n_layers=n_attn_blocks) | |
# self.layernorm = MobileViTV2LayerNorm2D(attn_unit_dim, eps=config.layer_norm_eps) | |
self.layernorm = nn.GroupNorm(num_groups=1, num_channels=attn_unit_dim, eps=config.layer_norm_eps) | |
# Fusion | |
self.conv_projection = MobileViTV2ConvLayer( | |
config, | |
in_channels=cnn_out_dim, | |
out_channels=in_channels, | |
kernel_size=1, | |
use_normalization=True, | |
use_activation=False, | |
) | |
def unfolding(self, feature_map: torch.Tensor) -> Tuple[torch.Tensor, Tuple[int, int]]: | |
batch_size, in_channels, img_height, img_width = feature_map.shape | |
patches = nn.functional.unfold( | |
feature_map, | |
kernel_size=(self.patch_height, self.patch_width), | |
stride=(self.patch_height, self.patch_width), | |
) | |
patches = patches.reshape(batch_size, in_channels, self.patch_height * self.patch_width, -1) | |
return patches, (img_height, img_width) | |
def folding(self, patches: torch.Tensor, output_size: Tuple[int, int]) -> torch.Tensor: | |
batch_size, in_dim, patch_size, n_patches = patches.shape | |
patches = patches.reshape(batch_size, in_dim * patch_size, n_patches) | |
feature_map = nn.functional.fold( | |
patches, | |
output_size=output_size, | |
kernel_size=(self.patch_height, self.patch_width), | |
stride=(self.patch_height, self.patch_width), | |
) | |
return feature_map | |
def forward(self, features: torch.Tensor) -> torch.Tensor: | |
# reduce spatial dimensions if needed | |
if self.downsampling_layer: | |
features = self.downsampling_layer(features) | |
# local representation | |
features = self.conv_kxk(features) | |
features = self.conv_1x1(features) | |
# convert feature map to patches | |
patches, output_size = self.unfolding(features) | |
# learn global representations | |
patches = self.transformer(patches) | |
patches = self.layernorm(patches) | |
# convert patches back to feature maps | |
# [batch_size, patch_height, patch_width, input_dim] --> [batch_size, input_dim, patch_height, patch_width] | |
features = self.folding(patches, output_size) | |
features = self.conv_projection(features) | |
return features | |
class MobileViTV2Encoder(nn.Module): | |
def __init__(self, config: MobileViTV2Config) -> None: | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList() | |
self.gradient_checkpointing = False | |
# segmentation architectures like DeepLab and PSPNet modify the strides | |
# of the classification backbones | |
dilate_layer_4 = dilate_layer_5 = False | |
if config.output_stride == 8: | |
dilate_layer_4 = True | |
dilate_layer_5 = True | |
elif config.output_stride == 16: | |
dilate_layer_5 = True | |
dilation = 1 | |
layer_0_dim = make_divisible( | |
clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16 | |
) | |
layer_1_dim = make_divisible(64 * config.width_multiplier, divisor=16) | |
layer_2_dim = make_divisible(128 * config.width_multiplier, divisor=8) | |
layer_3_dim = make_divisible(256 * config.width_multiplier, divisor=8) | |
layer_4_dim = make_divisible(384 * config.width_multiplier, divisor=8) | |
layer_5_dim = make_divisible(512 * config.width_multiplier, divisor=8) | |
layer_1 = MobileViTV2MobileNetLayer( | |
config, | |
in_channels=layer_0_dim, | |
out_channels=layer_1_dim, | |
stride=1, | |
num_stages=1, | |
) | |
self.layer.append(layer_1) | |
layer_2 = MobileViTV2MobileNetLayer( | |
config, | |
in_channels=layer_1_dim, | |
out_channels=layer_2_dim, | |
stride=2, | |
num_stages=2, | |
) | |
self.layer.append(layer_2) | |
layer_3 = MobileViTV2Layer( | |
config, | |
in_channels=layer_2_dim, | |
out_channels=layer_3_dim, | |
attn_unit_dim=make_divisible(config.base_attn_unit_dims[0] * config.width_multiplier, divisor=8), | |
n_attn_blocks=config.n_attn_blocks[0], | |
) | |
self.layer.append(layer_3) | |
if dilate_layer_4: | |
dilation *= 2 | |
layer_4 = MobileViTV2Layer( | |
config, | |
in_channels=layer_3_dim, | |
out_channels=layer_4_dim, | |
attn_unit_dim=make_divisible(config.base_attn_unit_dims[1] * config.width_multiplier, divisor=8), | |
n_attn_blocks=config.n_attn_blocks[1], | |
dilation=dilation, | |
) | |
self.layer.append(layer_4) | |
if dilate_layer_5: | |
dilation *= 2 | |
layer_5 = MobileViTV2Layer( | |
config, | |
in_channels=layer_4_dim, | |
out_channels=layer_5_dim, | |
attn_unit_dim=make_divisible(config.base_attn_unit_dims[2] * config.width_multiplier, divisor=8), | |
n_attn_blocks=config.n_attn_blocks[2], | |
dilation=dilation, | |
) | |
self.layer.append(layer_5) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
) -> Union[tuple, BaseModelOutputWithNoAttention]: | |
all_hidden_states = () if output_hidden_states else None | |
for i, layer_module in enumerate(self.layer): | |
if self.gradient_checkpointing and self.training: | |
hidden_states = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
) | |
else: | |
hidden_states = layer_module(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) | |
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) | |
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTPreTrainedModel with MobileViT->MobileViTV2,mobilevit->mobilevitv2 | |
class MobileViTV2PreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = MobileViTV2Config | |
base_model_prefix = "mobilevitv2" | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["MobileViTV2Layer"] | |
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
MOBILEVITV2_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it | |
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`MobileViTV2Config`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
MOBILEVITV2_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
[`MobileViTImageProcessor.__call__`] for details. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class MobileViTV2Model(MobileViTV2PreTrainedModel): | |
def __init__(self, config: MobileViTV2Config, expand_output: bool = True): | |
super().__init__(config) | |
self.config = config | |
self.expand_output = expand_output | |
layer_0_dim = make_divisible( | |
clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16 | |
) | |
self.conv_stem = MobileViTV2ConvLayer( | |
config, | |
in_channels=config.num_channels, | |
out_channels=layer_0_dim, | |
kernel_size=3, | |
stride=2, | |
use_normalization=True, | |
use_activation=True, | |
) | |
self.encoder = MobileViTV2Encoder(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def _prune_heads(self, heads_to_prune): | |
"""Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel | |
""" | |
for layer_index, heads in heads_to_prune.items(): | |
mobilevitv2_layer = self.encoder.layer[layer_index] | |
if isinstance(mobilevitv2_layer, MobileViTV2Layer): | |
for transformer_layer in mobilevitv2_layer.transformer.layer: | |
transformer_layer.attention.prune_heads(heads) | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
embedding_output = self.conv_stem(pixel_values) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if self.expand_output: | |
last_hidden_state = encoder_outputs[0] | |
# global average pooling: (batch_size, channels, height, width) -> (batch_size, channels) | |
pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False) | |
else: | |
last_hidden_state = encoder_outputs[0] | |
pooled_output = None | |
if not return_dict: | |
output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,) | |
return output + encoder_outputs[1:] | |
return BaseModelOutputWithPoolingAndNoAttention( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
) | |
class MobileViTV2ForImageClassification(MobileViTV2PreTrainedModel): | |
def __init__(self, config: MobileViTV2Config) -> None: | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.mobilevitv2 = MobileViTV2Model(config) | |
out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension | |
# Classifier head | |
self.classifier = ( | |
nn.Linear(in_features=out_channels, out_features=config.num_labels) | |
if config.num_labels > 0 | |
else nn.Identity() | |
) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
labels: Optional[torch.Tensor] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, ImageClassifierOutputWithNoAttention]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.mobilevitv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) | |
pooled_output = outputs.pooler_output if return_dict else outputs[1] | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return ImageClassifierOutputWithNoAttention( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
) | |
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTASPPPooling with MobileViT->MobileViTV2 | |
class MobileViTV2ASPPPooling(nn.Module): | |
def __init__(self, config: MobileViTV2Config, in_channels: int, out_channels: int) -> None: | |
super().__init__() | |
self.global_pool = nn.AdaptiveAvgPool2d(output_size=1) | |
self.conv_1x1 = MobileViTV2ConvLayer( | |
config, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
stride=1, | |
use_normalization=True, | |
use_activation="relu", | |
) | |
def forward(self, features: torch.Tensor) -> torch.Tensor: | |
spatial_size = features.shape[-2:] | |
features = self.global_pool(features) | |
features = self.conv_1x1(features) | |
features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False) | |
return features | |
class MobileViTV2ASPP(nn.Module): | |
""" | |
ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587 | |
""" | |
def __init__(self, config: MobileViTV2Config) -> None: | |
super().__init__() | |
encoder_out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension | |
in_channels = encoder_out_channels | |
out_channels = config.aspp_out_channels | |
if len(config.atrous_rates) != 3: | |
raise ValueError("Expected 3 values for atrous_rates") | |
self.convs = nn.ModuleList() | |
in_projection = MobileViTV2ConvLayer( | |
config, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
use_activation="relu", | |
) | |
self.convs.append(in_projection) | |
self.convs.extend( | |
[ | |
MobileViTV2ConvLayer( | |
config, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
dilation=rate, | |
use_activation="relu", | |
) | |
for rate in config.atrous_rates | |
] | |
) | |
pool_layer = MobileViTV2ASPPPooling(config, in_channels, out_channels) | |
self.convs.append(pool_layer) | |
self.project = MobileViTV2ConvLayer( | |
config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu" | |
) | |
self.dropout = nn.Dropout(p=config.aspp_dropout_prob) | |
def forward(self, features: torch.Tensor) -> torch.Tensor: | |
pyramid = [] | |
for conv in self.convs: | |
pyramid.append(conv(features)) | |
pyramid = torch.cat(pyramid, dim=1) | |
pooled_features = self.project(pyramid) | |
pooled_features = self.dropout(pooled_features) | |
return pooled_features | |
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTDeepLabV3 with MobileViT->MobileViTV2 | |
class MobileViTV2DeepLabV3(nn.Module): | |
""" | |
DeepLabv3 architecture: https://arxiv.org/abs/1706.05587 | |
""" | |
def __init__(self, config: MobileViTV2Config) -> None: | |
super().__init__() | |
self.aspp = MobileViTV2ASPP(config) | |
self.dropout = nn.Dropout2d(config.classifier_dropout_prob) | |
self.classifier = MobileViTV2ConvLayer( | |
config, | |
in_channels=config.aspp_out_channels, | |
out_channels=config.num_labels, | |
kernel_size=1, | |
use_normalization=False, | |
use_activation=False, | |
bias=True, | |
) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
features = self.aspp(hidden_states[-1]) | |
features = self.dropout(features) | |
features = self.classifier(features) | |
return features | |
class MobileViTV2ForSemanticSegmentation(MobileViTV2PreTrainedModel): | |
def __init__(self, config: MobileViTV2Config) -> None: | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.mobilevitv2 = MobileViTV2Model(config, expand_output=False) | |
self.segmentation_head = MobileViTV2DeepLabV3(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, SemanticSegmenterOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): | |
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). | |
Returns: | |
Examples: | |
```python | |
>>> import requests | |
>>> import torch | |
>>> from PIL import Image | |
>>> from transformers import AutoImageProcessor, MobileViTV2ForSemanticSegmentation | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> image_processor = AutoImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256") | |
>>> model = MobileViTV2ForSemanticSegmentation.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256") | |
>>> inputs = image_processor(images=image, return_tensors="pt") | |
>>> with torch.no_grad(): | |
... outputs = model(**inputs) | |
>>> # logits are of shape (batch_size, num_labels, height, width) | |
>>> logits = outputs.logits | |
```""" | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None and self.config.num_labels == 1: | |
raise ValueError("The number of labels should be greater than one") | |
outputs = self.mobilevitv2( | |
pixel_values, | |
output_hidden_states=True, # we need the intermediate hidden states | |
return_dict=return_dict, | |
) | |
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] | |
logits = self.segmentation_head(encoder_hidden_states) | |
loss = None | |
if labels is not None: | |
# upsample logits to the images' original size | |
upsampled_logits = nn.functional.interpolate( | |
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False | |
) | |
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) | |
loss = loss_fct(upsampled_logits, labels) | |
if not return_dict: | |
if output_hidden_states: | |
output = (logits,) + outputs[1:] | |
else: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SemanticSegmenterOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states if output_hidden_states else None, | |
attentions=None, | |
) | |