Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/mpt
/configuration_mpt.py
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Mpt configuration""" | |
from typing import TYPE_CHECKING, Optional, Union | |
if TYPE_CHECKING: | |
pass | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class MptAttentionConfig(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a [`MptAttention`] class. It is used to instantiate | |
attention layers according to the specified arguments, defining the layers architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the MPT | |
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) architecture. Most of the arguments are kept for backward | |
compatibility with previous MPT models that are hosted on the Hub (previously with `trust_remote_code=True`). | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
attn_type (`str`, *optional*, defaults to `"multihead_attention"`): | |
type of attention to use. Options: `"multihead_attention"`, `"multiquery_attention"`. | |
attn_pdrop (`float`, *optional*, defaults to 0.0): | |
The dropout probability for the attention layers. | |
attn_impl (`str`, *optional*, defaults to `"torch"`): | |
The attention implementation to use. One of `"torch"`, `"flash"`, or `"triton"`. | |
clip_qkv (`float`, *optional*): | |
If not `None`, clip the queries, keys, and values in the attention layer to this value. | |
softmax_scale (`float`, *optional*, defaults to `None`): | |
If not `None`, scale the softmax in the attention layer by this value. If `None`, will default to | |
`1/sqrt(hidden_size)`. | |
prefix_lm (`bool`, *optional*, defaults to `False`)): | |
Whether the model should operate as a Prefix LM. This requires passing an extra `prefix_mask` argument | |
which indicates which tokens belong to the prefix. Tokens in the prefix can attend to one another | |
bi-directionally. Tokens outside the prefix use causal attention. | |
qk_ln (`bool`, *optional*, defaults to `False`): | |
Whether to apply layer normalization to the queries and keys in the attention layer. | |
attn_uses_sequence_id (`bool`, *optional*, defaults to `False`)): | |
Whether to restrict attention to tokens that have the same token_type_ids. When the model is in `train` | |
mode, this requires passing an extra *token_type_ids* argument which indicates which sub-sequence each | |
token belongs to. Defaults to `False` meaning any provided *token_type_ids* will be ignored. | |
alibi (`bool`, *optional*, defaults to `True`): | |
Whether or not to use the alibi bias instead of positional embedding. | |
alibi_bias_max (`int`, *optional*, defaults to 8): | |
The maximum value of the alibi bias. | |
""" | |
def __init__( | |
self, | |
attn_type="multihead_attention", | |
attn_pdrop=0, | |
attn_impl="torch", | |
clip_qkv=None, | |
softmax_scale=None, | |
prefix_lm=False, | |
qk_ln=False, | |
attn_uses_sequence_id=False, | |
alibi=True, | |
alibi_bias_max=8, | |
**kwargs, | |
): | |
super().__init__() | |
self.attn_type = attn_type | |
self.attn_pdrop = attn_pdrop | |
self.attn_impl = attn_impl | |
self.clip_qkv = clip_qkv | |
self.softmax_scale = softmax_scale | |
self.prefix_lm = prefix_lm | |
self.attn_uses_sequence_id = attn_uses_sequence_id | |
self.alibi = alibi | |
self.qk_ln = qk_ln | |
self.alibi_bias_max = alibi_bias_max | |
if attn_type not in ["multihead_attention", "multiquery_attention"]: | |
raise ValueError( | |
f"`attn_type` has to be either `multihead_attention` or `multiquery_attention`. Received: {attn_type}" | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
if config_dict.get("model_type") == "mpt": | |
config_dict = config_dict["attn_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class MptConfig(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a [`MptModel`]. It is used to instantiate a Mpt model | |
according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to the Mpt-7b architecture | |
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b). | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
d_model (`int`, *optional*, defaults to 2048): | |
Dimensionality of the embeddings and hidden states. | |
n_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
n_layers (`int`, *optional*, defaults to 24): | |
Number of hidden layers in the Transformer encoder. | |
expansion_ratio (`int`, *optional*, defaults to 4): | |
The ratio of the up/down scale in the MLP. | |
max_seq_len (`int`, *optional*, defaults to 2048): | |
The maximum sequence length of the model. | |
vocab_size (`int`, *optional*, defaults to 50368): | |
Vocabulary size of the Mpt model. Defines the maximum number of different tokens that can be represented by | |
the `inputs_ids` passed when calling [`MptModel`]. Check [this | |
discussion](https://huggingface.co/bigscience/mpt/discussions/120#633d28389addb8530b406c2a) on how the | |
`vocab_size` has been defined. | |
resid_pdrop (`float`, *optional*, defaults to 0.0): | |
The dropout probability applied to the attention output before combining with residual. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): | |
The epsilon to use in the layer normalization layers. | |
emb_pdrop (`float`, *optional*, defaults to 0.0): | |
The dropout probability for the embedding layer. | |
learned_pos_emb (`bool`, *optional*, defaults to `True`): | |
Whether to use learned positional embeddings. | |
attn_config (`dict`, *optional*): | |
A dictionary used to configure the model's attention module. | |
init_device (`str`, *optional*, defaults to `"cpu"`): | |
The device to use for parameter initialization. Defined for backward compatibility | |
logit_scale (`float`, *optional*): | |
If not None, scale the logits by this value. | |
no_bias (`bool`, *optional*, defaults to `True`): | |
Whether to use bias in all linear layers. | |
verbose (`int`, *optional*, defaults to 0): | |
The verbosity level to use for logging. Used in the previous versions of MPT models for logging. This | |
argument is deprecated. | |
embedding_fraction (`float`, *optional*, defaults to 1.0): | |
The fraction to scale the gradients of the embedding layer by. | |
norm_type (`str`, *optional*, defaults to `"low_precision_layernorm"`): | |
Type of layer norm to use. All MPT models uses the same layer norm implementation. Defined for backward | |
compatibility. | |
use_cache (`bool`, *optional*, defaults to `False`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
Example: | |
```python | |
>>> from transformers import MptConfig, MptModel | |
>>> # Initializing a Mpt configuration | |
>>> configuration = MptConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = MptModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
``` | |
""" | |
model_type = "mpt" | |
attribute_map = { | |
"num_attention_heads": "n_heads", | |
"hidden_size": "d_model", | |
"num_hidden_layers": "n_layers", | |
} | |
def __init__( | |
self, | |
d_model: int = 2048, | |
n_heads: int = 16, | |
n_layers: int = 24, | |
expansion_ratio: int = 4, | |
max_seq_len: int = 2048, | |
vocab_size: int = 50368, | |
resid_pdrop: float = 0.0, | |
layer_norm_epsilon: float = 1e-5, | |
emb_pdrop: float = 0.0, | |
learned_pos_emb: bool = True, | |
attn_config: MptAttentionConfig = None, | |
init_device: str = "cpu", | |
logit_scale: Optional[Union[float, str]] = None, | |
no_bias: bool = True, | |
verbose: int = 0, | |
embedding_fraction: float = 1.0, | |
norm_type: str = "low_precision_layernorm", | |
use_cache: bool = False, | |
initializer_range=0.02, | |
**kwargs, | |
): | |
if attn_config is None: | |
self.attn_config = MptAttentionConfig() | |
elif isinstance(attn_config, dict): | |
self.attn_config = MptAttentionConfig(**attn_config) | |
else: | |
self.attn_config = attn_config | |
self.d_model = d_model | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.expansion_ratio = expansion_ratio | |
self.max_seq_len = max_seq_len | |
self.vocab_size = vocab_size | |
self.resid_pdrop = resid_pdrop | |
self.emb_pdrop = emb_pdrop | |
self.learned_pos_emb = learned_pos_emb | |
self.init_device = init_device | |
self.logit_scale = logit_scale | |
self.no_bias = no_bias | |
self.verbose = verbose | |
self.embedding_fraction = embedding_fraction | |
self.norm_type = norm_type | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.use_cache = use_cache | |
self.initializer_range = initializer_range | |
super().__init__(**kwargs) | |