Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/mpt
/modeling_mpt.py
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch MPT model.""" | |
import math | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss | |
from torch.nn import functional as F | |
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward | |
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask | |
from ...modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
CausalLMOutputWithCrossAttentions, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutputWithPast, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import logging | |
from .configuration_mpt import MptConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "mosaicml/mpt-7b" | |
_CONFIG_FOR_DOC = "MptConfig" | |
def build_mpt_alibi_tensor(num_heads, sequence_length, alibi_bias_max=8, device=None): | |
r""" | |
Link to paper: https://arxiv.org/abs/2108.12409 - Alibi tensor is not causal as the original paper mentions, it | |
relies on a translation invariance of softmax for quick implementation. This implementation has been copied from | |
the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi: | |
https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292 | |
""" | |
alibi = torch.arange(1 - sequence_length, 1, dtype=torch.int32, device=device).view(1, 1, 1, sequence_length) | |
num_heads_power_of_2 = 2 ** math.ceil(math.log2(num_heads)) | |
base = torch.arange(1, num_heads_power_of_2 + 1, dtype=torch.int64, device=device).float() | |
base = base * (alibi_bias_max / num_heads_power_of_2) | |
slopes = 1.0 / torch.pow(2, base) | |
slopes = slopes.view(1, num_heads_power_of_2, 1, 1) | |
if num_heads_power_of_2 != num_heads: | |
slopes = torch.concat([slopes[:, 1::2, ...], slopes[:, ::2, ...]], dim=1)[:, :num_heads, ...] | |
alibi = alibi * slopes | |
return alibi.squeeze(0) | |
class MptAttention(nn.Module): | |
"""Multi-head self attention. | |
Using torch or triton attention implemetation enables user to also use additive bias. | |
""" | |
def __init__(self, config: MptConfig): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.n_heads = config.n_heads | |
self.max_seq_length = config.max_seq_len | |
self.head_dim = self.hidden_size // self.n_heads | |
self.softmax_scale = config.attn_config.softmax_scale | |
if self.softmax_scale is None: | |
self.softmax_scale = 1 / math.sqrt(self.hidden_size / self.n_heads) | |
self.attn_dropout_p = config.attn_config.attn_pdrop | |
self.clip_qkv = config.attn_config.clip_qkv | |
self.Wqkv = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) | |
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
position_bias: torch.Tensor, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
): | |
batch_size, seq_length = hidden_states.shape[:2] | |
mixed_qkv = self.Wqkv(hidden_states) | |
if self.clip_qkv: | |
mixed_qkv = mixed_qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv) | |
query_states, key_states, value_states = mixed_qkv.chunk(3, dim=2) | |
query_states = query_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2) | |
if past_key_value is not None: | |
if len(past_key_value) != 0: | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
past_key_value = (key_states, value_states) | |
else: | |
past_key_value = (key_states, value_states) | |
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) * self.softmax_scale | |
query_length = seq_length if past_key_value is None else seq_length + past_key_value[0].shape[2] | |
if position_bias is not None: | |
if len(position_bias.shape) != 3: | |
raise ValueError(f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias.shape)}") | |
key_length = key_states.shape[-2] | |
position_bias_query_index = max(0, position_bias.size(1) - query_length) | |
position_bias_key_index = max(0, position_bias.size(2) - key_length) | |
position_bias = position_bias[:, position_bias_query_index:, position_bias_key_index:] | |
attention_scores = attention_scores + position_bias | |
if attention_mask is not None: | |
attention_scores = attention_scores.masked_fill(attention_mask, torch.finfo(query_states.dtype).min) | |
# (batch_size, n_heads, seq_length, key_length) | |
attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).to(value_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.attn_dropout_p, training=self.training) | |
context_states = torch.matmul(attn_weights, value_states) | |
context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1) | |
attn_output = self.out_proj(context_states) | |
return attn_output, attn_weights, past_key_value | |
class MptMLP(nn.Module): | |
def __init__(self, config: MptConfig): | |
super().__init__() | |
hidden_size = config.hidden_size | |
self.up_proj = nn.Linear(hidden_size, 4 * hidden_size, bias=False) | |
self.act = nn.GELU(approximate="none") | |
self.down_proj = nn.Linear(4 * hidden_size, hidden_size, bias=False) | |
self.hidden_dropout = config.attn_config.attn_pdrop | |
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.act(self.up_proj(hidden_states)) | |
intermediate_output = self.down_proj(hidden_states) | |
output = F.dropout(intermediate_output, p=self.hidden_dropout, training=self.training) | |
output = output + residual | |
return output | |
class MptBlock(nn.Module): | |
def __init__(self, config: MptConfig): | |
super().__init__() | |
hidden_size = config.hidden_size | |
self.norm_1 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
# backward compatibility with weights on the Hub | |
self.norm_1.bias = None | |
self.num_heads = config.n_heads | |
self.attn = MptAttention(config) | |
self.norm_2 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
# backward compatibility with weights on the Hub | |
self.norm_2.bias = None | |
self.ffn = MptMLP(config) | |
self.dropout_rate = config.attn_config.attn_pdrop | |
self.resid_attn_dropout = nn.Dropout(self.dropout_rate) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
position_bias: torch.Tensor, | |
attention_mask: torch.Tensor, | |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
use_cache: bool = False, | |
output_attentions: bool = False, | |
): | |
# hidden_states: [batch_size, seq_length, hidden_size] | |
# Layer norm at the beginning of the transformer layer. | |
layernorm_output = self.norm_1(hidden_states) | |
residual = hidden_states | |
# Self attention. | |
attn_outputs, attn_weights, past_key_value = self.attn( | |
layernorm_output, | |
position_bias=position_bias, | |
attention_mask=attention_mask, | |
past_key_value=layer_past, | |
) | |
hidden_states = self.resid_attn_dropout(attn_outputs) + residual | |
layernorm_output = self.norm_2(hidden_states) | |
# Get residual | |
residual = hidden_states | |
# MLP. | |
output = self.ffn(layernorm_output, residual) | |
outputs = (output,) | |
if use_cache: | |
outputs += (past_key_value,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs # hidden_states, present, attentions | |
class MptPreTrainedModel(PreTrainedModel): | |
config_class = MptConfig | |
base_model_prefix = "transformer" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["MptBlock"] | |
_keys_to_ignore_on_load_missing = [r"lm_head.*."] | |
def __init__(self, *inputs, **kwargs): | |
super().__init__(*inputs, **kwargs) | |
def _init_weights(self, module: nn.Module): | |
"""Initialize the weights.""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, LayerNorm): | |
if module.bias is not None: | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _convert_to_mpt_cache( | |
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], | |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: | |
""" | |
Converts the cache to the format expected by Mpt, i.e. to tuple(tuple([batch_size * num_heads, ...])) | |
""" | |
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape | |
batch_size_times_num_heads = batch_size * num_heads | |
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length] | |
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim] | |
return tuple( | |
( | |
layer_past[0].reshape(batch_size_times_num_heads, head_dim, seq_length), | |
layer_past[1].reshape(batch_size_times_num_heads, seq_length, head_dim), | |
) | |
for layer_past in past_key_value | |
) | |
MPT_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`MptConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
MPT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): | |
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]` | |
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. | |
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as | |
`input_ids`. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): | |
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see | |
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have | |
their past given to this model should not be passed as `input_ids` as they have already been computed. | |
Each element of `past_key_values` is a tuple (past_key, past_value): | |
- past_key: [batch_size * num_heads, head_dim, kv_length] | |
- past_value: [batch_size * num_heads, kv_length, head_dim] | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see | |
`past_key_values`). | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class MptModel(MptPreTrainedModel): | |
def __init__(self, config: MptConfig): | |
super().__init__(config) | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.n_heads | |
# Embedding + LN Embedding | |
self.wte = nn.Embedding(config.vocab_size, self.hidden_size) | |
# Transformer blocks | |
self.blocks = nn.ModuleList([MptBlock(config) for _ in range(config.n_layers)]) | |
# Final Layer Norm | |
self.norm_f = LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon) | |
# backward compatibility with weights on the Hub | |
self.norm_f.bias = None | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.wte | |
def build_mpt_alibi_tensor(self, num_heads, sequence_length, alibi_bias_max=8, device=None): | |
return build_mpt_alibi_tensor(num_heads, sequence_length, alibi_bias_max, device) | |
def set_input_embeddings(self, new_embeddings: torch.Tensor): | |
self.wte = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if past_key_values is None: | |
past_key_values = tuple([None] * len(self.blocks)) | |
if inputs_embeds is None: | |
inputs_embeds = self.wte(input_ids) | |
hidden_states = inputs_embeds | |
presents = () if use_cache else None | |
all_self_attentions = () if output_attentions else None | |
all_hidden_states = () if output_hidden_states else None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# Compute alibi tensor: check build_alibi_tensor documentation | |
seq_length_with_past = seq_length | |
past_key_values_length = 0 | |
if past_key_values[0] is not None: | |
past_key_values_length = past_key_values[0][0].shape[2] | |
seq_length_with_past = seq_length_with_past + past_key_values_length | |
if attention_mask is None: | |
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) | |
else: | |
attention_mask = attention_mask.to(hidden_states.device) | |
alibi = self.build_mpt_alibi_tensor(self.num_heads, self.config.max_seq_len, device=hidden_states.device) | |
causal_mask = _prepare_4d_causal_attention_mask( | |
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length | |
) | |
causal_mask = causal_mask.bool() | |
for block, layer_past in zip(self.blocks, past_key_values): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
outputs = self._gradient_checkpointing_func( | |
block.__call__, | |
hidden_states, | |
alibi, | |
causal_mask, | |
layer_past, | |
use_cache, | |
output_attentions, | |
) | |
else: | |
outputs = block( | |
hidden_states, | |
layer_past=layer_past, | |
attention_mask=causal_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
position_bias=alibi, | |
) | |
hidden_states = outputs[0] | |
if use_cache is True: | |
presents = presents + (outputs[1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | |
# Add last hidden state | |
hidden_states = self.norm_f(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=presents, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class MptForCausalLM(MptPreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config: MptConfig): | |
super().__init__(config) | |
self.transformer = MptModel(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings: torch.Tensor): | |
self.lm_head = new_embeddings | |
def prepare_inputs_for_generation( | |
self, | |
input_ids: torch.LongTensor, | |
past_key_values: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
**kwargs, | |
) -> dict: | |
# only last tokens for input_ids if past is not None | |
if past_key_values is not None: | |
past_length = past_key_values[0][0].shape[2] | |
# Some generation methods already pass only the last input ID | |
if input_ids.shape[1] > past_length: | |
remove_prefix_length = past_length | |
else: | |
# Default to old behavior: keep only final ID | |
remove_prefix_length = input_ids.shape[1] - 1 | |
input_ids = input_ids[:, remove_prefix_length:] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"past_key_values": past_key_values, # NITS should it be layer_past? | |
"use_cache": use_cache, | |
"attention_mask": attention_mask, | |
} | |
) | |
return model_inputs | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(lm_logits.device) | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
batch_size, seq_length, vocab_size = shift_logits.shape | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct( | |
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) | |
) | |
if not return_dict: | |
output = (lm_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return CausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
def _reorder_cache( | |
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor | |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: | |
""" | |
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
beam_idx at every generation step. | |
Output shares the same memory storage as `past`. | |
""" | |
# Get a copy of `beam_idx` on all the devices where we need those indices. | |
device_to_beam_idx = { | |
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past | |
} | |
reordered_past = tuple( | |
( | |
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), | |
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), | |
) | |
for layer_past in past | |
) | |
return reordered_past | |
class MptForSequenceClassification(MptPreTrainedModel): | |
def __init__(self, config: MptConfig): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = MptModel(config) | |
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
if self.config.pad_token_id is None and batch_size != 1: | |
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility | |
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | |
sequence_lengths = sequence_lengths % input_ids.shape[-1] | |
sequence_lengths = sequence_lengths.to(logits.device) | |
else: | |
sequence_lengths = -1 | |
logger.warning_once( | |
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | |
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" | |
) | |
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(pooled_logits, labels) | |
if not return_dict: | |
output = (pooled_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
class MptForTokenClassification(MptPreTrainedModel): | |
def __init__(self, config: MptConfig): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = MptModel(config) | |
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: | |
classifier_dropout = config.classifier_dropout | |
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: | |
classifier_dropout = config.hidden_dropout | |
else: | |
classifier_dropout = 0.1 | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
**deprecated_arguments, | |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
hidden_states = self.dropout(hidden_states) | |
logits = self.classifier(hidden_states) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
batch_size, seq_length = labels.shape | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct( | |
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) | |
) | |
if not return_dict: | |
output = (logits,) + transformer_outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
class MptForQuestionAnswering(MptPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.transformer = MptModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, 2) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
start_positions: Optional[torch.LongTensor] = None, | |
end_positions: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |