Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/mra
/modeling_mra.py
# coding=utf-8 | |
# Copyright 2023 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch MRA model.""" | |
import math | |
from pathlib import Path | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from torch.utils.cpp_extension import load | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutputWithCrossAttentions, | |
MaskedLMOutput, | |
MultipleChoiceModelOutput, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_ninja_available, | |
is_torch_cuda_available, | |
logging, | |
) | |
from .configuration_mra import MraConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "uw-madison/mra-base-512-4" | |
_CONFIG_FOR_DOC = "MraConfig" | |
_TOKENIZER_FOR_DOC = "AutoTokenizer" | |
mra_cuda_kernel = None | |
def load_cuda_kernels(): | |
global mra_cuda_kernel | |
src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "mra" | |
def append_root(files): | |
return [src_folder / file for file in files] | |
src_files = append_root(["cuda_kernel.cu", "cuda_launch.cu", "torch_extension.cpp"]) | |
mra_cuda_kernel = load("cuda_kernel", src_files, verbose=True) | |
def sparse_max(sparse_qk_prod, indices, query_num_block, key_num_block): | |
""" | |
Computes maximum values for softmax stability. | |
""" | |
if len(sparse_qk_prod.size()) != 4: | |
raise ValueError("sparse_qk_prod must be a 4-dimensional tensor.") | |
if len(indices.size()) != 2: | |
raise ValueError("indices must be a 2-dimensional tensor.") | |
if sparse_qk_prod.size(2) != 32: | |
raise ValueError("The size of the second dimension of sparse_qk_prod must be 32.") | |
if sparse_qk_prod.size(3) != 32: | |
raise ValueError("The size of the third dimension of sparse_qk_prod must be 32.") | |
index_vals = sparse_qk_prod.max(dim=-2).values.transpose(-1, -2) | |
index_vals = index_vals.contiguous() | |
indices = indices.int() | |
indices = indices.contiguous() | |
max_vals, max_vals_scatter = mra_cuda_kernel.index_max(index_vals, indices, query_num_block, key_num_block) | |
max_vals_scatter = max_vals_scatter.transpose(-1, -2)[:, :, None, :] | |
return max_vals, max_vals_scatter | |
def sparse_mask(mask, indices, block_size=32): | |
""" | |
Converts attention mask to a sparse mask for high resolution logits. | |
""" | |
if len(mask.size()) != 2: | |
raise ValueError("mask must be a 2-dimensional tensor.") | |
if len(indices.size()) != 2: | |
raise ValueError("indices must be a 2-dimensional tensor.") | |
if mask.shape[0] != indices.shape[0]: | |
raise ValueError("mask and indices must have the same size in the zero-th dimension.") | |
batch_size, seq_len = mask.shape | |
num_block = seq_len // block_size | |
batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device) | |
mask = mask.reshape(batch_size, num_block, block_size) | |
mask = mask[batch_idx[:, None], (indices % num_block).long(), :] | |
return mask | |
def mm_to_sparse(dense_query, dense_key, indices, block_size=32): | |
""" | |
Performs Sampled Dense Matrix Multiplication. | |
""" | |
batch_size, query_size, dim = dense_query.size() | |
_, key_size, dim = dense_key.size() | |
if query_size % block_size != 0: | |
raise ValueError("query_size (size of first dimension of dense_query) must be divisible by block_size.") | |
if key_size % block_size != 0: | |
raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.") | |
dense_query = dense_query.reshape(batch_size, query_size // block_size, block_size, dim).transpose(-1, -2) | |
dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2) | |
if len(dense_query.size()) != 4: | |
raise ValueError("dense_query must be a 4-dimensional tensor.") | |
if len(dense_key.size()) != 4: | |
raise ValueError("dense_key must be a 4-dimensional tensor.") | |
if len(indices.size()) != 2: | |
raise ValueError("indices must be a 2-dimensional tensor.") | |
if dense_query.size(3) != 32: | |
raise ValueError("The third dimension of dense_query must be 32.") | |
if dense_key.size(3) != 32: | |
raise ValueError("The third dimension of dense_key must be 32.") | |
dense_query = dense_query.contiguous() | |
dense_key = dense_key.contiguous() | |
indices = indices.int() | |
indices = indices.contiguous() | |
return mra_cuda_kernel.mm_to_sparse(dense_query, dense_key, indices.int()) | |
def sparse_dense_mm(sparse_query, indices, dense_key, query_num_block, block_size=32): | |
""" | |
Performs matrix multiplication of a sparse matrix with a dense matrix. | |
""" | |
batch_size, key_size, dim = dense_key.size() | |
if key_size % block_size != 0: | |
raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.") | |
if sparse_query.size(2) != block_size: | |
raise ValueError("The size of the second dimension of sparse_query must be equal to the block_size.") | |
if sparse_query.size(3) != block_size: | |
raise ValueError("The size of the third dimension of sparse_query must be equal to the block_size.") | |
dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2) | |
if len(sparse_query.size()) != 4: | |
raise ValueError("sparse_query must be a 4-dimensional tensor.") | |
if len(dense_key.size()) != 4: | |
raise ValueError("dense_key must be a 4-dimensional tensor.") | |
if len(indices.size()) != 2: | |
raise ValueError("indices must be a 2-dimensional tensor.") | |
if dense_key.size(3) != 32: | |
raise ValueError("The size of the third dimension of dense_key must be 32.") | |
sparse_query = sparse_query.contiguous() | |
indices = indices.int() | |
indices = indices.contiguous() | |
dense_key = dense_key.contiguous() | |
dense_qk_prod = mra_cuda_kernel.sparse_dense_mm(sparse_query, indices, dense_key, query_num_block) | |
dense_qk_prod = dense_qk_prod.transpose(-1, -2).reshape(batch_size, query_num_block * block_size, dim) | |
return dense_qk_prod | |
def transpose_indices(indices, dim_1_block, dim_2_block): | |
return ((indices % dim_2_block) * dim_1_block + torch.div(indices, dim_2_block, rounding_mode="floor")).long() | |
class MraSampledDenseMatMul(torch.autograd.Function): | |
def forward(ctx, dense_query, dense_key, indices, block_size): | |
sparse_qk_prod = mm_to_sparse(dense_query, dense_key, indices, block_size) | |
ctx.save_for_backward(dense_query, dense_key, indices) | |
ctx.block_size = block_size | |
return sparse_qk_prod | |
def backward(ctx, grad): | |
dense_query, dense_key, indices = ctx.saved_tensors | |
block_size = ctx.block_size | |
query_num_block = dense_query.size(1) // block_size | |
key_num_block = dense_key.size(1) // block_size | |
indices_T = transpose_indices(indices, query_num_block, key_num_block) | |
grad_key = sparse_dense_mm(grad.transpose(-1, -2), indices_T, dense_query, key_num_block) | |
grad_query = sparse_dense_mm(grad, indices, dense_key, query_num_block) | |
return grad_query, grad_key, None, None | |
def operator_call(dense_query, dense_key, indices, block_size=32): | |
return MraSampledDenseMatMul.apply(dense_query, dense_key, indices, block_size) | |
class MraSparseDenseMatMul(torch.autograd.Function): | |
def forward(ctx, sparse_query, indices, dense_key, query_num_block): | |
sparse_qk_prod = sparse_dense_mm(sparse_query, indices, dense_key, query_num_block) | |
ctx.save_for_backward(sparse_query, indices, dense_key) | |
ctx.query_num_block = query_num_block | |
return sparse_qk_prod | |
def backward(ctx, grad): | |
sparse_query, indices, dense_key = ctx.saved_tensors | |
query_num_block = ctx.query_num_block | |
key_num_block = dense_key.size(1) // sparse_query.size(-1) | |
indices_T = transpose_indices(indices, query_num_block, key_num_block) | |
grad_key = sparse_dense_mm(sparse_query.transpose(-1, -2), indices_T, grad, key_num_block) | |
grad_query = mm_to_sparse(grad, dense_key, indices) | |
return grad_query, None, grad_key, None | |
def operator_call(sparse_query, indices, dense_key, query_num_block): | |
return MraSparseDenseMatMul.apply(sparse_query, indices, dense_key, query_num_block) | |
class MraReduceSum: | |
def operator_call(sparse_query, indices, query_num_block, key_num_block): | |
batch_size, num_block, block_size, _ = sparse_query.size() | |
if len(sparse_query.size()) != 4: | |
raise ValueError("sparse_query must be a 4-dimensional tensor.") | |
if len(indices.size()) != 2: | |
raise ValueError("indices must be a 2-dimensional tensor.") | |
_, _, block_size, _ = sparse_query.size() | |
batch_size, num_block = indices.size() | |
sparse_query = sparse_query.sum(dim=2).reshape(batch_size * num_block, block_size) | |
batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device) | |
global_idxes = ( | |
torch.div(indices, key_num_block, rounding_mode="floor").long() + batch_idx[:, None] * query_num_block | |
).reshape(batch_size * num_block) | |
temp = torch.zeros( | |
(batch_size * query_num_block, block_size), dtype=sparse_query.dtype, device=sparse_query.device | |
) | |
output = temp.index_add(0, global_idxes, sparse_query).reshape(batch_size, query_num_block, block_size) | |
output = output.reshape(batch_size, query_num_block * block_size) | |
return output | |
def get_low_resolution_logit(query, key, block_size, mask=None, value=None): | |
""" | |
Compute low resolution approximation. | |
""" | |
batch_size, seq_len, head_dim = query.size() | |
num_block_per_row = seq_len // block_size | |
value_hat = None | |
if mask is not None: | |
token_count = mask.reshape(batch_size, num_block_per_row, block_size).sum(dim=-1) | |
query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / ( | |
token_count[:, :, None] + 1e-6 | |
) | |
key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / ( | |
token_count[:, :, None] + 1e-6 | |
) | |
if value is not None: | |
value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / ( | |
token_count[:, :, None] + 1e-6 | |
) | |
else: | |
token_count = block_size * torch.ones(batch_size, num_block_per_row, dtype=torch.float, device=query.device) | |
query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2) | |
key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2) | |
if value is not None: | |
value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2) | |
low_resolution_logit = torch.matmul(query_hat, key_hat.transpose(-1, -2)) / math.sqrt(head_dim) | |
low_resolution_logit_row_max = low_resolution_logit.max(dim=-1, keepdims=True).values | |
if mask is not None: | |
low_resolution_logit = ( | |
low_resolution_logit - 1e4 * ((token_count[:, None, :] * token_count[:, :, None]) < 0.5).float() | |
) | |
return low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat | |
def get_block_idxes( | |
low_resolution_logit, num_blocks, approx_mode, initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks | |
): | |
""" | |
Compute the indices of the subset of components to be used in the approximation. | |
""" | |
batch_size, total_blocks_per_row, _ = low_resolution_logit.shape | |
if initial_prior_diagonal_n_blocks > 0: | |
offset = initial_prior_diagonal_n_blocks // 2 | |
temp_mask = torch.ones(total_blocks_per_row, total_blocks_per_row, device=low_resolution_logit.device) | |
diagonal_mask = torch.tril(torch.triu(temp_mask, diagonal=-offset), diagonal=offset) | |
low_resolution_logit = low_resolution_logit + diagonal_mask[None, :, :] * 5e3 | |
if initial_prior_first_n_blocks > 0: | |
low_resolution_logit[:, :initial_prior_first_n_blocks, :] = ( | |
low_resolution_logit[:, :initial_prior_first_n_blocks, :] + 5e3 | |
) | |
low_resolution_logit[:, :, :initial_prior_first_n_blocks] = ( | |
low_resolution_logit[:, :, :initial_prior_first_n_blocks] + 5e3 | |
) | |
top_k_vals = torch.topk( | |
low_resolution_logit.reshape(batch_size, -1), num_blocks, dim=-1, largest=True, sorted=False | |
) | |
indices = top_k_vals.indices | |
if approx_mode == "full": | |
threshold = top_k_vals.values.min(dim=-1).values | |
high_resolution_mask = (low_resolution_logit >= threshold[:, None, None]).float() | |
elif approx_mode == "sparse": | |
high_resolution_mask = None | |
else: | |
raise ValueError(f"{approx_mode} is not a valid approx_model value.") | |
return indices, high_resolution_mask | |
def mra2_attention( | |
query, | |
key, | |
value, | |
mask, | |
num_blocks, | |
approx_mode, | |
block_size=32, | |
initial_prior_first_n_blocks=0, | |
initial_prior_diagonal_n_blocks=0, | |
): | |
""" | |
Use Mra to approximate self-attention. | |
""" | |
if mra_cuda_kernel is None: | |
return torch.zeros_like(query).requires_grad_() | |
batch_size, num_head, seq_len, head_dim = query.size() | |
meta_batch = batch_size * num_head | |
if seq_len % block_size != 0: | |
raise ValueError("sequence length must be divisible by the block_size.") | |
num_block_per_row = seq_len // block_size | |
query = query.reshape(meta_batch, seq_len, head_dim) | |
key = key.reshape(meta_batch, seq_len, head_dim) | |
value = value.reshape(meta_batch, seq_len, head_dim) | |
if mask is not None: | |
query = query * mask[:, :, None] | |
key = key * mask[:, :, None] | |
value = value * mask[:, :, None] | |
if approx_mode == "full": | |
low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat = get_low_resolution_logit( | |
query, key, block_size, mask, value | |
) | |
elif approx_mode == "sparse": | |
with torch.no_grad(): | |
low_resolution_logit, token_count, low_resolution_logit_row_max, _ = get_low_resolution_logit( | |
query, key, block_size, mask | |
) | |
else: | |
raise Exception('approx_mode must be "full" or "sparse"') | |
with torch.no_grad(): | |
low_resolution_logit_normalized = low_resolution_logit - low_resolution_logit_row_max | |
indices, high_resolution_mask = get_block_idxes( | |
low_resolution_logit_normalized, | |
num_blocks, | |
approx_mode, | |
initial_prior_first_n_blocks, | |
initial_prior_diagonal_n_blocks, | |
) | |
high_resolution_logit = MraSampledDenseMatMul.operator_call( | |
query, key, indices, block_size=block_size | |
) / math.sqrt(head_dim) | |
max_vals, max_vals_scatter = sparse_max(high_resolution_logit, indices, num_block_per_row, num_block_per_row) | |
high_resolution_logit = high_resolution_logit - max_vals_scatter | |
if mask is not None: | |
high_resolution_logit = high_resolution_logit - 1e4 * (1 - sparse_mask(mask, indices)[:, :, :, None]) | |
high_resolution_attn = torch.exp(high_resolution_logit) | |
high_resolution_attn_out = MraSparseDenseMatMul.operator_call( | |
high_resolution_attn, indices, value, num_block_per_row | |
) | |
high_resolution_normalizer = MraReduceSum.operator_call( | |
high_resolution_attn, indices, num_block_per_row, num_block_per_row | |
) | |
if approx_mode == "full": | |
low_resolution_attn = ( | |
torch.exp(low_resolution_logit - low_resolution_logit_row_max - 1e4 * high_resolution_mask) | |
* token_count[:, None, :] | |
) | |
low_resolution_attn_out = ( | |
torch.matmul(low_resolution_attn, value_hat)[:, :, None, :] | |
.repeat(1, 1, block_size, 1) | |
.reshape(meta_batch, seq_len, head_dim) | |
) | |
low_resolution_normalizer = ( | |
low_resolution_attn.sum(dim=-1)[:, :, None].repeat(1, 1, block_size).reshape(meta_batch, seq_len) | |
) | |
log_correction = low_resolution_logit_row_max.repeat(1, 1, block_size).reshape(meta_batch, seq_len) - max_vals | |
if mask is not None: | |
log_correction = log_correction * mask | |
low_resolution_corr = torch.exp(log_correction * (log_correction <= 0).float()) | |
low_resolution_attn_out = low_resolution_attn_out * low_resolution_corr[:, :, None] | |
low_resolution_normalizer = low_resolution_normalizer * low_resolution_corr | |
high_resolution_corr = torch.exp(-log_correction * (log_correction > 0).float()) | |
high_resolution_attn_out = high_resolution_attn_out * high_resolution_corr[:, :, None] | |
high_resolution_normalizer = high_resolution_normalizer * high_resolution_corr | |
context_layer = (high_resolution_attn_out + low_resolution_attn_out) / ( | |
high_resolution_normalizer[:, :, None] + low_resolution_normalizer[:, :, None] + 1e-6 | |
) | |
elif approx_mode == "sparse": | |
context_layer = high_resolution_attn_out / (high_resolution_normalizer[:, :, None] + 1e-6) | |
else: | |
raise Exception('config.approx_mode must be "full" or "sparse"') | |
if mask is not None: | |
context_layer = context_layer * mask[:, :, None] | |
context_layer = context_layer.reshape(batch_size, num_head, seq_len, head_dim) | |
return context_layer | |
class MraEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings.""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2) | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
self.register_buffer( | |
"token_type_ids", | |
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), | |
persistent=False, | |
) | |
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
if position_ids is None: | |
position_ids = self.position_ids[:, :seq_length] | |
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs | |
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves | |
# issue #5664 | |
if token_type_ids is None: | |
if hasattr(self, "token_type_ids"): | |
buffered_token_type_ids = self.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + token_type_embeddings | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings += position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class MraSelfAttention(nn.Module): | |
def __init__(self, config, position_embedding_type=None): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
kernel_loaded = mra_cuda_kernel is not None | |
if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded: | |
try: | |
load_cuda_kernels() | |
except Exception as e: | |
logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}") | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.position_embedding_type = ( | |
position_embedding_type if position_embedding_type is not None else config.position_embedding_type | |
) | |
self.num_block = (config.max_position_embeddings // 32) * config.block_per_row | |
self.num_block = min(self.num_block, int((config.max_position_embeddings // 32) ** 2)) | |
self.approx_mode = config.approx_mode | |
self.initial_prior_first_n_blocks = config.initial_prior_first_n_blocks | |
self.initial_prior_diagonal_n_blocks = config.initial_prior_diagonal_n_blocks | |
def transpose_for_scores(self, layer): | |
new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
layer = layer.view(*new_layer_shape) | |
return layer.permute(0, 2, 1, 3) | |
def forward(self, hidden_states, attention_mask=None): | |
mixed_query_layer = self.query(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
batch_size, num_heads, seq_len, head_dim = query_layer.size() | |
# revert changes made by get_extended_attention_mask | |
attention_mask = 1.0 + attention_mask / 10000.0 | |
attention_mask = ( | |
attention_mask.squeeze().repeat(1, num_heads, 1).reshape(batch_size * num_heads, seq_len).int() | |
) | |
# The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs | |
# smaller than this are padded with zeros. | |
gpu_warp_size = 32 | |
if head_dim < gpu_warp_size: | |
pad_size = batch_size, num_heads, seq_len, gpu_warp_size - head_dim | |
query_layer = torch.cat([query_layer, torch.zeros(pad_size, device=query_layer.device)], dim=-1) | |
key_layer = torch.cat([key_layer, torch.zeros(pad_size, device=key_layer.device)], dim=-1) | |
value_layer = torch.cat([value_layer, torch.zeros(pad_size, device=value_layer.device)], dim=-1) | |
context_layer = mra2_attention( | |
query_layer.float(), | |
key_layer.float(), | |
value_layer.float(), | |
attention_mask.float(), | |
self.num_block, | |
approx_mode=self.approx_mode, | |
initial_prior_first_n_blocks=self.initial_prior_first_n_blocks, | |
initial_prior_diagonal_n_blocks=self.initial_prior_diagonal_n_blocks, | |
) | |
if head_dim < gpu_warp_size: | |
context_layer = context_layer[:, :, :, :head_dim] | |
context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer,) | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput | |
class MraSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class MraAttention(nn.Module): | |
def __init__(self, config, position_embedding_type=None): | |
super().__init__() | |
self.self = MraSelfAttention(config, position_embedding_type=position_embedding_type) | |
self.output = MraSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward(self, hidden_states, attention_mask=None): | |
self_outputs = self.self(hidden_states, attention_mask) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertIntermediate | |
class MraIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertOutput | |
class MraOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class MraLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = MraAttention(config) | |
self.add_cross_attention = config.add_cross_attention | |
self.intermediate = MraIntermediate(config) | |
self.output = MraOutput(config) | |
def forward(self, hidden_states, attention_mask=None): | |
self_attention_outputs = self.attention(hidden_states, attention_mask) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
) | |
outputs = (layer_output,) + outputs | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
class MraEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([MraLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
attention_mask, | |
) | |
else: | |
layer_outputs = layer_module(hidden_states, attention_mask) | |
hidden_states = layer_outputs[0] | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) | |
return BaseModelOutputWithCrossAttentions( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
) | |
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform | |
class MraPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Mra | |
class MraLMPredictionHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.transform = MraPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
self.decoder.bias = self.bias | |
def _tie_weights(self): | |
self.decoder.bias = self.bias | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Mra | |
class MraOnlyMLMHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.predictions = MraLMPredictionHead(config) | |
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: | |
prediction_scores = self.predictions(sequence_output) | |
return prediction_scores | |
# Copied from transformers.models.yoso.modeling_yoso.YosoPreTrainedModel with Yoso->Mra,yoso->mra | |
class MraPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = MraConfig | |
base_model_prefix = "mra" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
MRA_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`MraConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
MRA_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class MraModel(MraPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = MraEmbeddings(config) | |
self.encoder = MraEncoder(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
batch_size, seq_length = input_shape | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones(((batch_size, seq_length)), device=device) | |
if token_type_ids is None: | |
if hasattr(self.embeddings, "token_type_ids"): | |
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
if not return_dict: | |
return (sequence_output,) + encoder_outputs[1:] | |
return BaseModelOutputWithCrossAttentions( | |
last_hidden_state=sequence_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
cross_attentions=encoder_outputs.cross_attentions, | |
) | |
class MraForMaskedLM(MraPreTrainedModel): | |
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.mra = MraModel(config) | |
self.cls = MraOnlyMLMHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.cls.predictions.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.cls.predictions.decoder = new_embeddings | |
self.cls.predictions.bias = new_embeddings.bias | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MaskedLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | |
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.mra( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.cls(sequence_output) | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() # -100 index = padding token | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (prediction_scores,) + outputs[1:] | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
return MaskedLMOutput( | |
loss=masked_lm_loss, | |
logits=prediction_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
# Copied from transformers.models.yoso.modeling_yoso.YosoClassificationHead with Yoso->Mra | |
class MraClassificationHead(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
self.config = config | |
def forward(self, features, **kwargs): | |
x = features[:, 0, :] # take <s> token (equiv. to [CLS]) | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = ACT2FN[self.config.hidden_act](x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class MraForSequenceClassification(MraPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.mra = MraModel(config) | |
self.classifier = MraClassificationHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.mra( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class MraForMultipleChoice(MraPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.mra = MraModel(config) | |
self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MultipleChoiceModelOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., | |
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See | |
`input_ids` above) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
outputs = self.mra( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) | |
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) | |
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) | |
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
output = (reshaped_logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return MultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class MraForTokenClassification(MraPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.mra = MraModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.mra( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# Only keep active parts of the loss | |
if attention_mask is not None: | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels) | |
active_labels = torch.where( | |
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) | |
) | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class MraForQuestionAnswering(MraPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
config.num_labels = 2 | |
self.num_labels = config.num_labels | |
self.mra = MraModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
start_positions: Optional[torch.Tensor] = None, | |
end_positions: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.mra( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1) | |
end_logits = end_logits.squeeze(-1) | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[1:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |