Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/musicgen
/processing_musicgen.py
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Text/audio processor class for MusicGen | |
""" | |
from typing import List, Optional | |
import numpy as np | |
from ...processing_utils import ProcessorMixin | |
from ...utils import to_numpy | |
class MusicgenProcessor(ProcessorMixin): | |
r""" | |
Constructs a MusicGen processor which wraps an EnCodec feature extractor and a T5 tokenizer into a single processor | |
class. | |
[`MusicgenProcessor`] offers all the functionalities of [`EncodecFeatureExtractor`] and [`TTokenizer`]. See | |
[`~MusicgenProcessor.__call__`] and [`~MusicgenProcessor.decode`] for more information. | |
Args: | |
feature_extractor (`EncodecFeatureExtractor`): | |
An instance of [`EncodecFeatureExtractor`]. The feature extractor is a required input. | |
tokenizer (`T5Tokenizer`): | |
An instance of [`T5Tokenizer`]. The tokenizer is a required input. | |
""" | |
feature_extractor_class = "EncodecFeatureExtractor" | |
tokenizer_class = ("T5Tokenizer", "T5TokenizerFast") | |
def __init__(self, feature_extractor, tokenizer): | |
super().__init__(feature_extractor, tokenizer) | |
self.current_processor = self.feature_extractor | |
self._in_target_context_manager = False | |
def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): | |
return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps) | |
def __call__(self, *args, **kwargs): | |
""" | |
Forwards the `audio` argument to EncodecFeatureExtractor's [`~EncodecFeatureExtractor.__call__`] and the `text` | |
argument to [`~T5Tokenizer.__call__`]. Please refer to the doctsring of the above two methods for more | |
information. | |
""" | |
# For backward compatibility | |
if self._in_target_context_manager: | |
return self.current_processor(*args, **kwargs) | |
audio = kwargs.pop("audio", None) | |
sampling_rate = kwargs.pop("sampling_rate", None) | |
text = kwargs.pop("text", None) | |
if len(args) > 0: | |
audio = args[0] | |
args = args[1:] | |
if audio is None and text is None: | |
raise ValueError("You need to specify either an `audio` or `text` input to process.") | |
if text is not None: | |
inputs = self.tokenizer(text, **kwargs) | |
if audio is not None: | |
audio_inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) | |
if audio is None: | |
return inputs | |
elif text is None: | |
return audio_inputs | |
else: | |
inputs["input_values"] = audio_inputs["input_values"] | |
if "padding_mask" in audio_inputs: | |
inputs["padding_mask"] = audio_inputs["padding_mask"] | |
return inputs | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method is used to decode either batches of audio outputs from the MusicGen model, or batches of token ids | |
from the tokenizer. In the case of decoding token ids, this method forwards all its arguments to T5Tokenizer's | |
[`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. | |
""" | |
audio_values = kwargs.pop("audio", None) | |
padding_mask = kwargs.pop("padding_mask", None) | |
if len(args) > 0: | |
audio_values = args[0] | |
args = args[1:] | |
if audio_values is not None: | |
return self._decode_audio(audio_values, padding_mask=padding_mask) | |
else: | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to T5Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the | |
docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
def _decode_audio(self, audio_values, padding_mask: Optional = None) -> List[np.ndarray]: | |
""" | |
This method strips any padding from the audio values to return a list of numpy audio arrays. | |
""" | |
audio_values = to_numpy(audio_values) | |
bsz, channels, seq_len = audio_values.shape | |
if padding_mask is None: | |
return list(audio_values) | |
padding_mask = to_numpy(padding_mask) | |
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** | |
# token (so that the generated audio values are **not** treated as padded tokens) | |
difference = seq_len - padding_mask.shape[-1] | |
padding_value = 1 - self.feature_extractor.padding_value | |
padding_mask = np.pad(padding_mask, ((0, 0), (0, difference)), "constant", constant_values=padding_value) | |
audio_values = audio_values.tolist() | |
for i in range(bsz): | |
sliced_audio = np.asarray(audio_values[i])[ | |
padding_mask[i][None, :] != self.feature_extractor.padding_value | |
] | |
audio_values[i] = sliced_audio.reshape(channels, -1) | |
return audio_values | |