Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/nllb
/tokenization_nllb.py
# coding=utf-8 | |
# Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from shutil import copyfile | |
from typing import Any, Dict, List, Optional, Tuple | |
import sentencepiece as spm | |
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
SPIECE_UNDERLINE = "▁" | |
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} | |
FAIRSEQ_LANGUAGE_CODES = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] # fmt: skip | |
class NllbTokenizer(PreTrainedTokenizer): | |
""" | |
Construct an NLLB tokenizer. | |
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on | |
[SentencePiece](https://github.com/google/sentencepiece). | |
The tokenization method is `<tokens> <eos> <language code>` for source language documents, and `<language code> | |
<tokens> <eos>` for target language documents. | |
Examples: | |
```python | |
>>> from transformers import NllbTokenizer | |
>>> tokenizer = NllbTokenizer.from_pretrained( | |
... "facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn" | |
... ) | |
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" | |
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie." | |
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt") | |
``` | |
Args: | |
vocab_file (`str`): | |
Path to the vocabulary file. | |
bos_token (`str`, *optional*, defaults to `"<s>"`): | |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. | |
<Tip> | |
When building a sequence using special tokens, this is not the token that is used for the beginning of | |
sequence. The token used is the `cls_token`. | |
</Tip> | |
eos_token (`str`, *optional*, defaults to `"</s>"`): | |
The end of sequence token. | |
<Tip> | |
When building a sequence using special tokens, this is not the token that is used for the end of sequence. | |
The token used is the `sep_token`. | |
</Tip> | |
sep_token (`str`, *optional*, defaults to `"</s>"`): | |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
sequence classification or for a text and a question for question answering. It is also used as the last | |
token of a sequence built with special tokens. | |
cls_token (`str`, *optional*, defaults to `"<s>"`): | |
The classifier token which is used when doing sequence classification (classification of the whole sequence | |
instead of per-token classification). It is the first token of the sequence when built with special tokens. | |
unk_token (`str`, *optional*, defaults to `"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
pad_token (`str`, *optional*, defaults to `"<pad>"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
mask_token (`str`, *optional*, defaults to `"<mask>"`): | |
The token used for masking values. This is the token used when training this model with masked language | |
modeling. This is the token which the model will try to predict. | |
tokenizer_file (`str`, *optional*): | |
The path to a tokenizer file to use instead of the vocab file. | |
src_lang (`str`, *optional*): | |
The language to use as source language for translation. | |
tgt_lang (`str`, *optional*): | |
The language to use as target language for translation. | |
sp_model_kwargs (`Dict[str, str]`): | |
Additional keyword arguments to pass to the model initialization. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
model_input_names = ["input_ids", "attention_mask"] | |
prefix_tokens: List[int] = [] | |
suffix_tokens: List[int] = [] | |
def __init__( | |
self, | |
vocab_file, | |
bos_token="<s>", | |
eos_token="</s>", | |
sep_token="</s>", | |
cls_token="<s>", | |
unk_token="<unk>", | |
pad_token="<pad>", | |
mask_token="<mask>", | |
tokenizer_file=None, | |
src_lang=None, | |
tgt_lang=None, | |
sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
additional_special_tokens=None, | |
legacy_behaviour=False, | |
**kwargs, | |
): | |
if additional_special_tokens is None: | |
additional_special_tokens = FAIRSEQ_LANGUAGE_CODES | |
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token | |
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token | |
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token | |
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token | |
# Mask token behave like a normal word, i.e. include the space before it | |
mask_token = ( | |
AddedToken(mask_token, normalized=True, lstrip=True, special=True) | |
if isinstance(mask_token, str) | |
else mask_token | |
) | |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | |
self.legacy_behaviour = legacy_behaviour | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.Load(str(vocab_file)) | |
self.vocab_file = vocab_file | |
# Original fairseq vocab and spm vocab must be "aligned": | |
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- | |
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | |
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' | |
# unk token needs to be in the vocab with correct index | |
self._added_tokens_decoder = {0: bos_token, 1: pad_token, 2: eos_token, 3: unk_token} | |
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab | |
self.fairseq_offset = 1 | |
self.sp_model_size = len(self.sp_model) | |
super().__init__( | |
bos_token=bos_token, | |
eos_token=eos_token, | |
unk_token=unk_token, | |
sep_token=sep_token, | |
cls_token=cls_token, | |
pad_token=pad_token, | |
mask_token=mask_token, | |
tokenizer_file=tokenizer_file, | |
src_lang=src_lang, | |
tgt_lang=tgt_lang, | |
additional_special_tokens=additional_special_tokens, | |
sp_model_kwargs=self.sp_model_kwargs, | |
legacy_behaviour=legacy_behaviour, | |
**kwargs, | |
) | |
self._src_lang = src_lang if src_lang is not None else "eng_Latn" | |
self.cur_lang_code_id = self.convert_tokens_to_ids(self._src_lang) | |
self.tgt_lang = tgt_lang | |
self.set_src_lang_special_tokens(self._src_lang) | |
def __getstate__(self): | |
state = self.__dict__.copy() | |
state["sp_model"] = None | |
state["sp_model_proto"] = self.sp_model.serialized_model_proto() | |
return state | |
def __setstate__(self, d): | |
self.__dict__ = d | |
# for backward compatibility | |
if not hasattr(self, "sp_model_kwargs"): | |
self.sp_model_kwargs = {} | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.LoadFromSerializedProto(self.sp_model_proto) | |
def vocab_size(self): | |
return len(self.sp_model) + self.fairseq_offset | |
def src_lang(self) -> str: | |
return self._src_lang | |
def src_lang(self, new_src_lang: str) -> None: | |
self._src_lang = new_src_lang | |
self.set_src_lang_special_tokens(self._src_lang) | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
prefix_ones = [1] * len(self.prefix_tokens) | |
suffix_ones = [1] * len(self.suffix_tokens) | |
if token_ids_1 is None: | |
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones | |
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. An NLLB sequence has the following format, where `X` represents the sequence: | |
- `input_ids` (for encoder) `X [eos, src_lang_code]` | |
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` | |
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a | |
separator. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
""" | |
if token_ids_1 is None: | |
return self.prefix_tokens + token_ids_0 + self.suffix_tokens | |
# We don't expect to process pairs, but leave the pair logic for API consistency | |
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not | |
make use of token type ids, therefore a list of zeros is returned. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of zeros. | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
if token_ids_1 is None: | |
return len(cls + token_ids_0 + sep) * [0] | |
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] | |
def _build_translation_inputs( | |
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs | |
): | |
"""Used by translation pipeline, to prepare inputs for the generate function""" | |
if src_lang is None or tgt_lang is None: | |
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") | |
self.src_lang = src_lang | |
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) | |
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) | |
inputs["forced_bos_token_id"] = tgt_lang_id | |
return inputs | |
def get_vocab(self): | |
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
def _tokenize(self, text: str) -> List[str]: | |
return self.sp_model.encode(text, out_type=str) | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
spm_id = self.sp_model.PieceToId(token) | |
# Need to return unknown token if the SP model returned 0 | |
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
return self.sp_model.IdToPiece(index - self.fairseq_offset) | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (strings for sub-words) in a single string.""" | |
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() | |
return out_string | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
out_vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): | |
copyfile(self.vocab_file, out_vocab_file) | |
elif not os.path.isfile(self.vocab_file): | |
with open(out_vocab_file, "wb") as fi: | |
content_spiece_model = self.sp_model.serialized_model_proto() | |
fi.write(content_spiece_model) | |
return (out_vocab_file,) | |
def prepare_seq2seq_batch( | |
self, | |
src_texts: List[str], | |
src_lang: str = "eng_Latn", | |
tgt_texts: Optional[List[str]] = None, | |
tgt_lang: str = "fra_Latn", | |
**kwargs, | |
) -> BatchEncoding: | |
self.src_lang = src_lang | |
self.tgt_lang = tgt_lang | |
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) | |
def _switch_to_input_mode(self): | |
return self.set_src_lang_special_tokens(self.src_lang) | |
def _switch_to_target_mode(self): | |
return self.set_tgt_lang_special_tokens(self.tgt_lang) | |
def set_src_lang_special_tokens(self, src_lang) -> None: | |
"""Reset the special tokens to the source lang setting. | |
- In legacy mode: No prefix and suffix=[eos, src_lang_code]. | |
- In default mode: Prefix=[src_lang_code], suffix = [eos] | |
""" | |
self.cur_lang_code = self.convert_tokens_to_ids(src_lang) | |
if self.legacy_behaviour: | |
self.prefix_tokens = [] | |
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] | |
else: | |
self.prefix_tokens = [self.cur_lang_code] | |
self.suffix_tokens = [self.eos_token_id] | |
def set_tgt_lang_special_tokens(self, lang: str) -> None: | |
"""Reset the special tokens to the target lang setting. | |
- In legacy mode: No prefix and suffix=[eos, tgt_lang_code]. | |
- In default mode: Prefix=[tgt_lang_code], suffix = [eos] | |
""" | |
self.cur_lang_code = self.convert_tokens_to_ids(lang) | |
if self.legacy_behaviour: | |
self.prefix_tokens = [] | |
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] | |
else: | |
self.prefix_tokens = [self.cur_lang_code] | |
self.suffix_tokens = [self.eos_token_id] | |