Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/nougat
/processing_nougat.py
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processor class for Nougat. | |
""" | |
from typing import Dict, List, Optional, Union | |
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput, TruncationStrategy | |
from ...processing_utils import ProcessorMixin | |
from ...utils import PaddingStrategy, TensorType | |
class NougatProcessor(ProcessorMixin): | |
r""" | |
Constructs a Nougat processor which wraps a Nougat image processor and a Nougat tokenizer into a single processor. | |
[`NougatProcessor`] offers all the functionalities of [`NougatImageProcessor`] and [`NougatTokenizerFast`]. See the | |
[`~NougatProcessor.__call__`] and [`~NougatProcessor.decode`] for more information. | |
Args: | |
image_processor ([`NougatImageProcessor`]): | |
An instance of [`NougatImageProcessor`]. The image processor is a required input. | |
tokenizer ([`NougatTokenizerFast`]): | |
An instance of [`NougatTokenizerFast`]. The tokenizer is a required input. | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
image_processor_class = "AutoImageProcessor" | |
tokenizer_class = "AutoTokenizer" | |
def __init__(self, image_processor, tokenizer): | |
super().__init__(image_processor, tokenizer) | |
self.current_processor = self.image_processor | |
def __call__( | |
self, | |
images=None, | |
text=None, | |
do_crop_margin: bool = None, | |
do_resize: bool = None, | |
size: Dict[str, int] = None, | |
resample: "PILImageResampling" = None, # noqa: F821 | |
do_thumbnail: bool = None, | |
do_align_long_axis: bool = None, | |
do_pad: bool = None, | |
do_rescale: bool = None, | |
rescale_factor: Union[int, float] = None, | |
do_normalize: bool = None, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821 | |
input_data_format: Optional[Union[str, "ChannelDimension"]] = None, # noqa: F821 | |
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, | |
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
text_pair_target: Optional[ | |
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] | |
] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
is_split_into_words: bool = False, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
): | |
if images is None and text is None: | |
raise ValueError("You need to specify either an `images` or `text` input to process.") | |
if images is not None: | |
inputs = self.image_processor( | |
images, | |
do_crop_margin=do_crop_margin, | |
do_resize=do_resize, | |
size=size, | |
resample=resample, | |
do_thumbnail=do_thumbnail, | |
do_align_long_axis=do_align_long_axis, | |
do_pad=do_pad, | |
do_rescale=do_rescale, | |
rescale_factor=rescale_factor, | |
do_normalize=do_normalize, | |
image_mean=image_mean, | |
image_std=image_std, | |
return_tensors=return_tensors, | |
data_format=data_format, | |
input_data_format=input_data_format, | |
) | |
if text is not None: | |
encodings = self.tokenizer( | |
text, | |
text_pair=text_pair, | |
text_target=text_target, | |
text_pair_target=text_pair_target, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
is_split_into_words=is_split_into_words, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
) | |
if text is None: | |
return inputs | |
elif images is None: | |
return encodings | |
else: | |
inputs["labels"] = encodings["input_ids"] | |
return inputs | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer | |
to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
def post_process_generation(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.post_process_generation`]. | |
Please refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.post_process_generation(*args, **kwargs) | |