Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/openai
/configuration_openai.py
# coding=utf-8 | |
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""OpenAI GPT configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class OpenAIGPTConfig(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a [`OpenAIGPTModel`] or a [`TFOpenAIGPTModel`]. It is | |
used to instantiate a GPT model according to the specified arguments, defining the model architecture. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT | |
[openai-community/openai-gpt](https://huggingface.co/openai-community/openai-gpt) architecture from OpenAI. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 40478): | |
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`OpenAIGPTModel`] or [`TFOpenAIGPTModel`]. | |
n_positions (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
n_embd (`int`, *optional*, defaults to 768): | |
Dimensionality of the embeddings and hidden states. | |
n_layer (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
n_head (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
afn (`str` or `Callable`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
resid_pdrop (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
embd_pdrop (`int`, *optional*, defaults to 0.1): | |
The dropout ratio for the embeddings. | |
attn_pdrop (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): | |
The epsilon to use in the layer normalization layers | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
summary_type (`str`, *optional*, defaults to `"cls_index"`): | |
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and | |
[`OpenAIGPTDoubleHeadsModel`]. | |
Has to be one of the following options: | |
- `"last"`: Take the last token hidden state (like XLNet). | |
- `"first"`: Take the first token hidden state (like BERT). | |
- `"mean"`: Take the mean of all tokens hidden states. | |
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). | |
- `"attn"`: Not implemented now, use multi-head attention. | |
summary_use_proj (`bool`, *optional*, defaults to `True`): | |
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and | |
[`OpenAIGPTDoubleHeadsModel`]. | |
Whether or not to add a projection after the vector extraction. | |
summary_activation (`str`, *optional*): | |
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and | |
[`OpenAIGPTDoubleHeadsModel`]. | |
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. | |
summary_proj_to_labels (`bool`, *optional*, defaults to `True`): | |
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and | |
[`OpenAIGPTDoubleHeadsModel`]. | |
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. | |
summary_first_dropout (`float`, *optional*, defaults to 0.1): | |
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and | |
[`OpenAIGPTDoubleHeadsModel`]. | |
The dropout ratio to be used after the projection and activation. | |
Examples: | |
```python | |
>>> from transformers import OpenAIGPTConfig, OpenAIGPTModel | |
>>> # Initializing a GPT configuration | |
>>> configuration = OpenAIGPTConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = OpenAIGPTModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "openai-gpt" | |
attribute_map = { | |
"max_position_embeddings": "n_positions", | |
"hidden_size": "n_embd", | |
"num_attention_heads": "n_head", | |
"num_hidden_layers": "n_layer", | |
} | |
def __init__( | |
self, | |
vocab_size=40478, | |
n_positions=512, | |
n_embd=768, | |
n_layer=12, | |
n_head=12, | |
afn="gelu", | |
resid_pdrop=0.1, | |
embd_pdrop=0.1, | |
attn_pdrop=0.1, | |
layer_norm_epsilon=1e-5, | |
initializer_range=0.02, | |
summary_type="cls_index", | |
summary_use_proj=True, | |
summary_activation=None, | |
summary_proj_to_labels=True, | |
summary_first_dropout=0.1, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.n_positions = n_positions | |
self.n_embd = n_embd | |
self.n_layer = n_layer | |
self.n_head = n_head | |
self.afn = afn | |
self.resid_pdrop = resid_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.attn_pdrop = attn_pdrop | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
self.summary_type = summary_type | |
self.summary_use_proj = summary_use_proj | |
self.summary_activation = summary_activation | |
self.summary_first_dropout = summary_first_dropout | |
self.summary_proj_to_labels = summary_proj_to_labels | |
super().__init__(**kwargs) | |