Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/opt
/configuration_opt.py
# coding=utf-8 | |
# Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""OPT model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class OPTConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model | |
according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the OPT | |
[facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 50272): | |
Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`OPTModel`] | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of decoder layers. | |
ffn_dim (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
activation_function (`str` or `function`, *optional*, defaults to `"relu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
max_position_embeddings (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
do_layer_norm_before (`bool`, *optional*, defaults to `True`): | |
Whether to perform layer normalization before the attention block. | |
word_embed_proj_dim (`int`, *optional*): | |
`word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to | |
`hidden_size`. | |
dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
layerdrop (`float`, *optional*, defaults to 0.0): | |
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more | |
details. | |
init_std (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
enable_bias (`bool`, *optional*, defaults to `True`): | |
Whether or not if the linear layers in the attention blocks should use the bias term. | |
layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether or not if the layer norms should have learnable parameters. | |
Example: | |
```python | |
>>> from transformers import OPTConfig, OPTModel | |
>>> # Initializing a OPT facebook/opt-large style configuration | |
>>> configuration = OPTConfig() | |
>>> # Initializing a model (with random weights) from the facebook/opt-large style configuration | |
>>> model = OPTModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "opt" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=50272, | |
hidden_size=768, | |
num_hidden_layers=12, | |
ffn_dim=3072, | |
max_position_embeddings=2048, | |
do_layer_norm_before=True, | |
_remove_final_layer_norm=False, | |
word_embed_proj_dim=None, | |
dropout=0.1, | |
attention_dropout=0.0, | |
num_attention_heads=12, | |
activation_function="relu", | |
layerdrop=0.0, | |
init_std=0.02, | |
use_cache=True, | |
pad_token_id=1, | |
bos_token_id=2, | |
eos_token_id=2, | |
enable_bias=True, | |
layer_norm_elementwise_affine=True, | |
**kwargs, | |
): | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
**kwargs, | |
) | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.num_attention_heads = num_attention_heads | |
self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size | |
self.ffn_dim = ffn_dim | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.activation_function = activation_function | |
self.init_std = init_std | |
self.layerdrop = layerdrop | |
self.use_cache = use_cache | |
self.do_layer_norm_before = do_layer_norm_before | |
# We keep these variables at `True` for backward compatibility. | |
self.enable_bias = enable_bias | |
self.layer_norm_elementwise_affine = layer_norm_elementwise_affine | |
# Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility | |
# with checkpoints that have been fine-tuned before transformers v4.20.1 | |
# see https://github.com/facebookresearch/metaseq/pull/164 | |
self._remove_final_layer_norm = _remove_final_layer_norm | |