Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/paligemma
/processing_paligemma.py
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processor class for PaliGemma. | |
""" | |
import logging | |
from typing import List, Optional, Union | |
from ...feature_extraction_utils import BatchFeature | |
from ...image_utils import ImageInput, is_valid_image | |
from ...processing_utils import ProcessorMixin | |
from ...tokenization_utils_base import ( | |
AddedToken, | |
PaddingStrategy, | |
PreTokenizedInput, | |
TextInput, | |
TruncationStrategy, | |
) | |
from ...utils import TensorType | |
logger = logging.getLogger(__name__) | |
IMAGE_TOKEN = "<image>" | |
EXTRA_TOKENS = [f"<loc{i:0>4}>" for i in range(1024)] + [f"<seg{i:0>3}>" for i in range(128)] | |
# Copied from transformers.models.idefics2.processing_idefics2.is_url | |
def is_url(val) -> bool: | |
return isinstance(val, str) and val.startswith("http") | |
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url | |
def is_image_or_image_url(elem): | |
return is_url(elem) or is_valid_image(elem) | |
def _is_str_or_image(elem): | |
return isinstance(elem, (str)) or is_image_or_image_url(elem) | |
def build_string_from_input(prompt, bos_token, image_seq_len, image_token): | |
""" | |
Builds a string from the input prompt and image tokens. | |
For example, for the call: | |
build_string_from_input( | |
prompt="Prefix str" | |
bos_token="<s>", | |
image_seq_len=3, | |
image_token="<im>", | |
) | |
The output will be: | |
"<im><im><im><s>Initial str" | |
Args: | |
prompt (`List[Union[str, ImageInput]]`): The input prompt. | |
bos_token (`str`): The beginning of sentence token. | |
image_seq_len (`int`): The length of the image sequence. | |
image_token (`str`): The image token. | |
""" | |
return f"{image_token * image_seq_len}{bos_token}{prompt}\n" | |
class PaliGemmaProcessor(ProcessorMixin): | |
r""" | |
Constructs a PaliGemma processor which wraps a PaliGemma image processor and a PaliGemma tokenizer into a single processor. | |
[`PaliGemmaProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`LlamaTokenizerFast`]. See the | |
[`~PaliGemmaProcessor.__call__`] and [`~PaliGemmaProcessor.decode`] for more information. | |
Args: | |
image_processor ([`SiglipImageProcessor`], *optional*): | |
The image processor is a required input. | |
tokenizer ([`LlamaTokenizerFast`], *optional*): | |
The tokenizer is a required input. | |
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages | |
in a chat into a tokenizable string. | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
valid_kwargs = ["chat_template"] | |
image_processor_class = "SiglipImageProcessor" | |
tokenizer_class = ("GemmaTokenizer", "GemmaTokenizerFast") | |
def __init__( | |
self, | |
image_processor=None, | |
tokenizer=None, | |
chat_template=None, | |
**kwargs, | |
): | |
if image_processor is None: | |
raise ValueError("You need to specify an `image_processor`.") | |
if tokenizer is None: | |
raise ValueError("You need to specify a `tokenizer`.") | |
if not hasattr(image_processor, "image_seq_length"): | |
raise ValueError("Image processor is missing an `image_seq_length` attribute.") | |
self.image_seq_length = image_processor.image_seq_length | |
image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True) | |
tokens_to_add = {"additional_special_tokens": [image_token]} | |
tokenizer.add_special_tokens(tokens_to_add) | |
tokenizer.add_tokens(EXTRA_TOKENS) | |
self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) | |
tokenizer.add_bos_token = False | |
tokenizer.add_eos_token = False | |
super().__init__(image_processor, tokenizer, chat_template=chat_template) | |
def __call__( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
images: ImageInput = None, | |
tokenize_newline_separately: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length=None, | |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | |
do_resize: bool = None, | |
do_normalize: bool = None, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821 | |
input_data_format: Optional[ | |
Union[str, "ChannelDimension"] # noqa: F821 | |
] = None, | |
resample: "PILImageResampling" = None, # noqa: F821 | |
do_convert_rgb: bool = None, | |
do_thumbnail: bool = None, | |
do_align_long_axis: bool = None, | |
do_rescale: bool = None, | |
suffix: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, | |
) -> BatchFeature: | |
""" | |
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | |
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode | |
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to | |
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | |
of the above two methods for more information. | |
The usage for PaliGemma fine-tuning preparation is slightly different than usual. suffix passed are suffixes to | |
the prompt in `text`, and will be placed after the prompt. This is because attention is handled differently for | |
the prefix and the suffix. For instance, | |
```python | |
image = PIL_cow_image | |
prompt = "answer en Where is the cow standing?" | |
suffix = "on the beach" | |
inputs = processor(text=prompt, images=image, suffix=suffix) | |
``` | |
Here `inputs` will contain the `input_ids` and `token_type_ids` that follow | |
```python | |
inputs["input_ids"][:, 256:] | |
# tensor([[ 2, 6006, 603, 573, 13910, 9980, 235336, 108, 477, 573, 8318]]) | |
inputs["token_type_ids"][:, 256:] | |
tensor([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]]) | |
``` | |
Meaning the last three tokens are of "label" ("suffix") type while the other ones are of "prefix" type. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a | |
number of channels, H and W are image height and width. | |
tokenize_newline_separately (`bool`, defaults to `True`): | |
Adds a separately tokenized '\n' at the end of the prompt. | |
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | |
Select a strategy to pad the returned sequences (according to the model's padding side and padding | |
index) among: | |
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
lengths). | |
max_length (`int`, *optional*): | |
Maximum length of the returned list and optionally padding length (see above). | |
truncation (`bool`, *optional*): | |
Activates truncation to cut input sequences longer than `max_length` to `max_length`. | |
return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
If set, will return tensors of a particular framework. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return NumPy `np.ndarray` objects. | |
- `'jax'`: Return JAX `jnp.ndarray` objects. | |
suffix (`str`, `List[str]`, `List[List[str]]`): | |
The suffixes or batch of suffixes to be encoded. Only necessary for finetuning. See https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md | |
for more information. If your prompt is "<image> What is on the image", the suffix corresponds to the expected prediction "a cow sitting on a bench". | |
Returns: | |
[`BatchFeature`]: A [`BatchFeature`] with the following fields: | |
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix` | |
is provided, the `input_ids` will also contain the suffix input ids. | |
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
`None`). | |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | |
- **labels** -- Labels compatible with training if `suffix` is not None | |
""" | |
return_token_type_ids = True if suffix is not None else False | |
if images is None: | |
raise ValueError("`images` are expected as arguments to a `PaliGemmaProcessor` instance.") | |
if text is None: | |
logger.warning_once( | |
"You are using PaliGemma without a text prefix. It will perform as a picture-captioning model." | |
) | |
text = "" | |
if isinstance(text, List) and isinstance(images, List): | |
if len(images) < len(text): | |
raise ValueError( | |
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image." | |
) | |
if _is_str_or_image(text): | |
text = [text] | |
elif isinstance(text, list) and _is_str_or_image(text[0]): | |
pass | |
if suffix is not None and _is_str_or_image(suffix): | |
suffix = [suffix] | |
if suffix is not None: | |
suffix = [sfx + self.tokenizer.eos_token for sfx in suffix] | |
input_strings = [ | |
build_string_from_input( | |
prompt=prompt, | |
bos_token=self.tokenizer.bos_token, | |
image_seq_len=self.image_seq_length, | |
image_token=IMAGE_TOKEN, | |
) | |
for prompt in text | |
] | |
pixel_values = self.image_processor( | |
images, | |
do_resize=do_resize, | |
do_normalize=do_normalize, | |
return_tensors=return_tensors, | |
image_mean=image_mean, | |
image_std=image_std, | |
input_data_format=input_data_format, | |
data_format=data_format, | |
resample=resample, | |
do_convert_rgb=do_convert_rgb, | |
)["pixel_values"] | |
if max_length is not None: | |
max_length += self.image_seq_length # max_length has to account for the image tokens | |
inputs = self.tokenizer( | |
input_strings, | |
text_pair=suffix, | |
return_tensors=return_tensors, | |
padding=padding, | |
max_length=max_length, | |
truncation=truncation, | |
return_token_type_ids=return_token_type_ids, | |
) | |
return_data = {**inputs, "pixel_values": pixel_values} | |
if return_token_type_ids: | |
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100) | |
return_data.update({"labels": labels}) | |
return BatchFeature(data=return_data) | |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->PaliGemma | |
def model_input_names(self): | |
tokenizer_input_names = self.tokenizer.model_input_names | |
image_processor_input_names = self.image_processor.model_input_names | |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |