Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/patchtsmixer
/modeling_patchtsmixer.py
# coding=utf-8 | |
# Copyright 2023 IBM and HuggingFace Inc. team. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch PatchTSMixer model.""" | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ModelOutput | |
from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput | |
from ...utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_patchtsmixer import PatchTSMixerConfig | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "PatchTSMixerConfig" | |
PATCHTSMIXER_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`PatchTSMixerConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
mask_input (`bool`, *optional*, defaults to `False`): | |
If True, Masking will be enabled. False otherwise. | |
""" | |
PATCHTSMIXER_INPUTS_DOCSTRING = r""" | |
Args: | |
past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`): | |
Context values of the time series. For a pretraining task, this denotes the input time series to predict | |
the masked portion. For a forecasting task, this denotes the history/past time series values. Similarly, | |
for classification or regression tasks, it denotes the appropriate context values of the time series. | |
For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series, it is | |
greater than 1. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class PatchTSMixerGatedAttention(nn.Module): | |
""" | |
Module that applies gated attention to input data. | |
Args: | |
in_size (`int`): The input size. | |
out_size (`int`): The output size. | |
""" | |
def __init__(self, in_size: int, out_size: int): | |
super().__init__() | |
self.attn_layer = nn.Linear(in_size, out_size) | |
self.attn_softmax = nn.Softmax(dim=-1) | |
def forward(self, inputs): | |
attn_weight = self.attn_softmax(self.attn_layer(inputs)) | |
inputs = inputs * attn_weight | |
return inputs | |
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTBatchNorm with PatchTST->PatchTSMixer | |
class PatchTSMixerBatchNorm(nn.Module): | |
""" | |
Compute batch normalization over the sequence length (time) dimension. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
self.batchnorm = nn.BatchNorm1d(config.d_model, eps=config.norm_eps) | |
def forward(self, inputs: torch.Tensor): | |
""" | |
Parameters: | |
inputs (`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`): | |
input for Batch norm calculation | |
Returns: | |
`torch.Tensor` of shape `(batch_size, sequence_length, d_model)` | |
""" | |
output = inputs.transpose(1, 2) # output: (batch_size, d_model, sequence_length) | |
output = self.batchnorm(output) | |
return output.transpose(1, 2) | |
class PatchTSMixerPositionalEncoding(nn.Module): | |
""" | |
Class for positional encoding | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
# positional encoding: [num_patches x d_model] | |
if config.use_positional_encoding: | |
self.position_enc = self._init_pe(config) | |
else: | |
self.position_enc = nn.Parameter(torch.zeros(config.num_patches, config.d_model)) | |
def _init_pe(config: PatchTSMixerConfig) -> nn.Parameter: | |
# Positional encoding | |
if config.positional_encoding_type == "random": | |
position_enc = nn.Parameter(torch.randn(config.num_patches, config.d_model), requires_grad=True) | |
elif config.positional_encoding_type == "sincos": | |
position_enc = torch.zeros(config.num_patches, config.d_model) | |
position = torch.arange(0, config.num_patches).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, config.d_model, 2) * -(math.log(10000.0) / config.d_model)) | |
position_enc[:, 0::2] = torch.sin(position * div_term) | |
position_enc[:, 1::2] = torch.cos(position * div_term) | |
position_enc = position_enc - position_enc.mean() | |
position_enc = position_enc / (position_enc.std() * 10) | |
position_enc = nn.Parameter(position_enc, requires_grad=False) | |
else: | |
raise ValueError( | |
f"{config.positional_encoding_type} is not a valid positional encoder. Available types are 'random' and 'sincos'." | |
) | |
return position_enc | |
def forward(self, patch_input: torch.Tensor): | |
# hidden_state: [bs x num_channels x num_patches x d_model] | |
hidden_state = patch_input + self.position_enc | |
return hidden_state | |
class PatchTSMixerNormLayer(nn.Module): | |
"""Normalization block | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
self.norm_mlp = config.norm_mlp | |
if "batch" in config.norm_mlp.lower(): | |
self.norm = PatchTSMixerBatchNorm(config) | |
else: | |
self.norm = nn.LayerNorm(config.d_model, eps=config.norm_eps) | |
def forward(self, inputs: torch.Tensor): | |
""" | |
Args: | |
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`): | |
Input to the normalization layer. | |
Returns: | |
`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))` | |
""" | |
if "batch" in self.norm_mlp.lower(): | |
# reshape the data | |
inputs_reshaped = torch.reshape( | |
inputs, | |
( | |
inputs.shape[0] * inputs.shape[1], | |
inputs.shape[2], | |
inputs.shape[3], | |
), | |
) # inputs_reshaped: [batch_size*num_channels, num_patches, d_model] | |
# inputs_reshaped: [batch_size*num_channels, num_patches, d_model] | |
inputs_reshaped = self.norm(inputs_reshaped) | |
# put back data to the original shape | |
inputs = torch.reshape(inputs_reshaped, inputs.shape) | |
else: | |
inputs = self.norm(inputs) | |
return inputs | |
class PatchTSMixerMLP(nn.Module): | |
def __init__(self, in_features, out_features, config): | |
super().__init__() | |
num_hidden = in_features * config.expansion_factor | |
self.fc1 = nn.Linear(in_features, num_hidden) | |
self.dropout1 = nn.Dropout(config.dropout) | |
self.fc2 = nn.Linear(num_hidden, out_features) | |
self.dropout2 = nn.Dropout(config.dropout) | |
def forward(self, inputs: torch.Tensor): | |
""" | |
Args: | |
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`): | |
Input to the MLP layer. | |
Returns: | |
`torch.Tensor` of the same shape as `inputs` | |
""" | |
inputs = self.dropout1(nn.functional.gelu(self.fc1(inputs))) | |
inputs = self.fc2(inputs) | |
inputs = self.dropout2(inputs) | |
return inputs | |
class PatchTSMixerChannelFeatureMixerBlock(nn.Module): | |
"""This module mixes the features in the channel dimension. | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
self.norm = PatchTSMixerNormLayer(config) | |
self.gated_attn = config.gated_attn | |
self.mlp = PatchTSMixerMLP( | |
in_features=config.num_input_channels, | |
out_features=config.num_input_channels, | |
config=config, | |
) | |
if config.gated_attn: | |
self.gating_block = PatchTSMixerGatedAttention( | |
in_size=config.num_input_channels, out_size=config.num_input_channels | |
) | |
def forward(self, inputs: torch.Tensor): | |
""" | |
Args: | |
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`): | |
input to the MLP layer | |
Returns: | |
`torch.Tensor` of the same shape as `inputs` | |
""" | |
residual = inputs | |
inputs = self.norm(inputs) | |
inputs = inputs.permute(0, 3, 2, 1) | |
if self.gated_attn: | |
inputs = self.gating_block(inputs) | |
inputs = self.mlp(inputs) | |
inputs = inputs.permute(0, 3, 2, 1) | |
out = inputs + residual | |
return out | |
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PatchTSMixer | |
class PatchTSMixerAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
is_decoder: bool = False, | |
bias: bool = True, | |
is_causal: bool = False, | |
config: Optional[PatchTSMixerConfig] = None, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
self.config = config | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.is_decoder = is_decoder | |
self.is_causal = is_causal | |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# get key, value proj | |
# `past_key_value[0].shape[2] == key_value_states.shape[1]` | |
# is checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
if ( | |
is_cross_attention | |
and past_key_value is not None | |
and past_key_value[0].shape[2] == key_value_states.shape[1] | |
): | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.reshape(*proj_shape) | |
value_states = value_states.reshape(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if output_attentions: | |
# this operation is a bit awkward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to be reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped, past_key_value | |
class PatchMixerBlock(nn.Module): | |
"""This module mixes the patch dimension. | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
self.norm = PatchTSMixerNormLayer(config) | |
self.self_attn = config.self_attn | |
self.gated_attn = config.gated_attn | |
self.mlp = PatchTSMixerMLP( | |
in_features=config.num_patches, | |
out_features=config.num_patches, | |
config=config, | |
) | |
if config.gated_attn: | |
self.gating_block = PatchTSMixerGatedAttention(in_size=config.num_patches, out_size=config.num_patches) | |
if config.self_attn: | |
self.self_attn_layer = PatchTSMixerAttention( | |
embed_dim=config.d_model, | |
num_heads=config.self_attn_heads, | |
dropout=config.dropout, | |
) | |
self.norm_attn = PatchTSMixerNormLayer(config) | |
def forward(self, hidden_state): | |
""" | |
Args: | |
hidden_state (`torch.Tensor`): Input tensor. | |
Returns: | |
`torch.Tensor`: Transformed tensor. | |
""" | |
residual = hidden_state | |
hidden_state = self.norm(hidden_state) | |
if self.self_attn: | |
batch_size, n_vars, num_patches, d_model = hidden_state.shape | |
hidden_state_reshaped = hidden_state.reshape(batch_size * n_vars, num_patches, d_model) | |
x_attn, _, _ = self.self_attn_layer(hidden_state_reshaped, output_attentions=False) | |
x_attn = x_attn.reshape(batch_size, n_vars, num_patches, d_model) | |
# Transpose so that num_patches is the last dimension | |
hidden_state = hidden_state.transpose(2, 3) | |
hidden_state = self.mlp(hidden_state) | |
if self.gated_attn: | |
hidden_state = self.gating_block(hidden_state) | |
# Transpose back | |
hidden_state = hidden_state.transpose(2, 3) | |
if self.self_attn: | |
hidden_state = self.norm_attn(hidden_state + x_attn) | |
out = hidden_state + residual | |
return out | |
class FeatureMixerBlock(nn.Module): | |
"""This module mixes the hidden feature dimension. | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
self.norm = PatchTSMixerNormLayer(config) | |
self.gated_attn = config.gated_attn | |
self.mlp = PatchTSMixerMLP( | |
in_features=config.d_model, | |
out_features=config.d_model, | |
config=config, | |
) | |
if config.gated_attn: | |
self.gating_block = PatchTSMixerGatedAttention(in_size=config.d_model, out_size=config.d_model) | |
def forward(self, hidden: torch.Tensor): | |
""" | |
Args: | |
hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`): | |
Input tensor to the layer. | |
Returns: | |
`torch.Tensor`: Transformed tensor. | |
""" | |
residual = hidden | |
hidden = self.norm(hidden) | |
hidden = self.mlp(hidden) | |
if self.gated_attn: | |
hidden = self.gating_block(hidden) | |
out = hidden + residual | |
return out | |
class PatchTSMixerLayer(nn.Module): | |
""" | |
The `PatchTSMixer` layer that does all three kinds of mixing. | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
self.patch_mixer = PatchMixerBlock(config=config) | |
self.feature_mixer = FeatureMixerBlock(config=config) | |
self.mode = config.mode | |
if config.mode == "mix_channel": | |
self.channel_feature_mixer = PatchTSMixerChannelFeatureMixerBlock(config=config) | |
def forward(self, hidden: torch.Tensor): | |
""" | |
Args: | |
hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`): | |
Input tensor to the layer. | |
Returns: | |
`torch.Tensor`: Transformed tensor. | |
""" | |
if self.mode == "mix_channel": | |
hidden = self.channel_feature_mixer(hidden) | |
hidden = self.patch_mixer(hidden) | |
hidden = self.feature_mixer(hidden) # hidden: (batch_size x num_patches x d_model) | |
return hidden | |
class PatchTSMixerBlock(nn.Module): | |
"""The main computing framework of the `PatchTSMixer` model. | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
num_layers = config.num_layers | |
self.mixers = nn.ModuleList([PatchTSMixerLayer(config=config) for _ in range(num_layers)]) | |
def forward(self, hidden_state, output_hidden_states: bool = False): | |
""" | |
Args: | |
hidden_state (`torch.Tensor`): The input tensor. | |
output_hidden_states (`bool`, *optional*, defaults to False.): | |
Whether to output the hidden states as well. | |
Returns: | |
`torch.Tensor`: The embedding. `list`: List of all hidden states if `output_hidden_states` is set to | |
`True`. | |
""" | |
all_hidden_states = [] | |
embedding = hidden_state | |
for mod in self.mixers: | |
embedding = mod(embedding) | |
if output_hidden_states: | |
all_hidden_states.append(embedding) | |
if output_hidden_states: | |
return embedding, all_hidden_states | |
else: | |
return embedding, None | |
class PatchTSMixerForPredictionHead(nn.Module): | |
"""Prediction Head for Forecasting | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
""" | |
def __init__(self, config: PatchTSMixerConfig, distribution_output=None): | |
super().__init__() | |
self.prediction_channel_indices = config.prediction_channel_indices | |
if self.prediction_channel_indices is not None: | |
self.prediction_channel_indices.sort() | |
self.dropout_layer = nn.Dropout(config.head_dropout) | |
if distribution_output is None: | |
self.base_forecast_block = nn.Linear((config.num_patches * config.d_model), config.prediction_length) | |
else: | |
self.base_forecast_block = distribution_output.get_parameter_projection( | |
config.num_patches * config.d_model | |
) | |
self.flatten = nn.Flatten(start_dim=-2) | |
def forward(self, hidden_features): | |
""" | |
Args: | |
hidden_features (`torch.Tensor` of shape `(batch_size, num_patch, d_model)` in `flatten` mode | |
or `(batch_size, n_vars, num_patch, d_model)` in `common_channel`/`mix_channel` mode.): Input hidden | |
features. | |
Returns: | |
`torch.Tensor` of shape `(batch_size, prediction_length, nvars)`. | |
""" | |
hidden_features = self.flatten(hidden_features) # [batch_size x n_vars x num_patch * d_model] | |
hidden_features = self.dropout_layer(hidden_features) # [batch_size x n_vars x num_patch * d_model] | |
forecast = self.base_forecast_block(hidden_features) # [batch_size x n_vars x prediction_length] | |
if isinstance(forecast, tuple): | |
forecast = tuple(z.transpose(-1, -2) for z in forecast) | |
else: | |
forecast = forecast.transpose(-1, -2) # [batch_size x prediction_length x n_vars] | |
if self.prediction_channel_indices is not None: | |
if isinstance(forecast, tuple): | |
forecast = tuple(z[..., self.prediction_channel_indices] for z in forecast) | |
else: | |
forecast = forecast[..., self.prediction_channel_indices] # [batch_size x prediction_length x n_vars] | |
return forecast | |
class PatchTSMixerLinearHead(nn.Module): | |
"""Linear head for Classification and Regression. | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
""" | |
def __init__(self, config: PatchTSMixerConfig, distribution_output=None): | |
super().__init__() | |
self.head_aggregation = config.head_aggregation | |
self.output_range = config.output_range | |
if config.head_aggregation is None: | |
mul_factor = config.num_patches | |
else: | |
mul_factor = 1 | |
self.distribution_output = distribution_output | |
if distribution_output is None: | |
self.projection = nn.Linear( | |
config.d_model * config.num_input_channels * mul_factor, | |
config.num_targets, | |
) | |
else: | |
self.projection = distribution_output.get_parameter_projection( | |
config.d_model * config.num_input_channels * mul_factor | |
) | |
if config.head_aggregation is None: | |
self.flatten = nn.Flatten(start_dim=-3) | |
else: | |
self.flatten = nn.Flatten(start_dim=-2) | |
self.dropout = nn.Dropout(config.head_dropout) | |
def forward(self, hidden_features): | |
""" | |
Args: | |
hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode | |
or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden | |
features. | |
Returns: | |
`torch.Tensor` of shape `(batch_size x num_targets)`. | |
""" | |
# batch_size x d_model x num_patch or batch_size x n_vars x d_model x num_patch | |
hidden_features = hidden_features.transpose(-1, -2) | |
if self.head_aggregation == "use_last": | |
# batch_size x d_model (flatten) or # batch_size x n_vars x d_model (common_channel) | |
hidden_features = hidden_features[..., -1] | |
elif self.head_aggregation == "max_pool": | |
# batch_size x n_vars x d_model or batch_size x d_model | |
hidden_features = hidden_features.max(dim=-1).values | |
elif self.head_aggregation == "avg_pool": | |
# batch_size x n_vars x d_model or batch_size x d_model | |
hidden_features = hidden_features.mean(dim=-1) | |
if self.flatten: | |
hidden_features = self.flatten(hidden_features) | |
hidden_features = self.dropout(hidden_features) | |
hidden_features = self.projection(hidden_features) # batch_size x num_targets | |
if (self.distribution_output is None) and (self.output_range is not None): | |
hidden_features = ( | |
torch.sigmoid(hidden_features) * (self.output_range[1] - self.output_range[0]) + self.output_range[0] | |
) | |
return hidden_features | |
class PatchTSMixerPreTrainedModel(PreTrainedModel): | |
# Weight initialization | |
config_class = PatchTSMixerConfig | |
base_model_prefix = "model" | |
main_input_name = "past_values" | |
supports_gradient_checkpointing = False | |
def _init_weights(self, module): | |
"""Initialize weights""" | |
if isinstance(module, PatchTSMixerPositionalEncoding): | |
# initialize positional encoding | |
if self.config.positional_encoding_type == "random": | |
nn.init.normal_(module.position_enc, mean=0.0, std=0.1) | |
elif isinstance(module, (nn.LayerNorm, nn.BatchNorm1d)): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, PatchTSMixerBatchNorm): | |
module.batchnorm.bias.data.zero_() | |
module.batchnorm.weight.data.fill_(1.0) | |
elif isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=self.config.init_std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
class PatchTSMixerPretrainHead(nn.Module): | |
"""Pretraining head. | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
self.dropout_layer = nn.Dropout(config.head_dropout) | |
self.base_pt_block = nn.Linear(config.d_model, config.patch_length) | |
def forward(self, hidden_features): | |
""" | |
Args: | |
hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode | |
or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden | |
features. | |
Returns: | |
`torch.Tensor` of shape `(batch_size x n_vars x num_patch x patch_length)`. | |
""" | |
hidden_features = self.dropout_layer(hidden_features) | |
forecast = self.base_pt_block(hidden_features) # [batch_size x n_vars x num_patch x patch_length] | |
return forecast | |
# Copied from transformers.models.patchtst.modeling_patchtst.random_masking | |
def random_masking( | |
inputs: torch.Tensor, | |
mask_ratio: float, | |
unmasked_channel_indices: list = None, | |
channel_consistent_masking: bool = False, | |
mask_value: int = 0, | |
): | |
"""random_masking: Mask the input considering the control variables. | |
Args: | |
inputs (`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, num_features)`): | |
The input tensor to mask. | |
mask_ratio (`float`): | |
Masking ratio applied to mask the input data during random pretraining. It is the number between 0 and 1. | |
unmasked_channel_indices (list, *optional*): | |
Indices of channels that will not be masked. | |
channel_consistent_masking (bool, *optional*, defaults to `False`): | |
When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary | |
across channels. | |
mask_value (int, *optional*, defaults to 0): | |
Define the value of masked patches for pretraining. | |
Returns: | |
`tuple(torch.Tensor)`: inputs_mask, masked input, same shape as input Tensor and mask tensor of shape [bs x c x | |
n] | |
""" | |
if mask_ratio < 0 or mask_ratio >= 1: | |
raise ValueError(f"Mask ratio {mask_ratio} has to be between 0 and 1.") | |
batch_size, num_channels, sequence_length, num_features = inputs.shape | |
device = inputs.device | |
len_keep = int(sequence_length * (1 - mask_ratio)) | |
if channel_consistent_masking: | |
noise = torch.rand(batch_size, 1, sequence_length, device=device) # noise in [0, 1], bs x 1 x L | |
noise = noise.repeat(1, num_channels, 1) # bs x num_channels x time | |
else: | |
# noise in [0, 1], bs x num_channels x L | |
noise = torch.rand(batch_size, num_channels, sequence_length, device=device) | |
# mask: [bs x num_channels x num_patch] | |
mask = torch.ones(batch_size, num_channels, sequence_length, device=device) | |
mask[:, :, :len_keep] = 0 | |
# sort noise for each sample | |
ids_shuffle = torch.argsort(noise, dim=-1) # ascend: small is keep, large is remove | |
ids_restore = torch.argsort(ids_shuffle, dim=-1) # ids_restore: [bs x num_channels x L] | |
mask = torch.gather(mask, dim=-1, index=ids_restore) | |
mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patches x patch_length] | |
if unmasked_channel_indices is not None: | |
mask[:, unmasked_channel_indices, :, :] = 0 | |
inputs_mask = inputs.masked_fill(mask.bool(), mask_value) | |
return inputs_mask, mask[..., 0] | |
# Copied from transformers.models.patchtst.modeling_patchtst.forecast_masking | |
def forecast_masking( | |
inputs: torch.Tensor, | |
num_forecast_mask_patches: Union[list, int], | |
unmasked_channel_indices: list = None, | |
mask_value: int = 0, | |
): | |
"""Forecast masking that masks the last K patches where K is from the num_forecast_mask_patches. | |
If num_forecast_mask_patches is a list, samples in the batch will be randomly masked by numbers defined in the list. | |
Parameters: | |
inputs (`torch.Tensor`): | |
Input of shape `(bs, num_channels, num_patch, patch_length)` | |
num_forecast_mask_patches (`list`): | |
Number of patches to be masked at the end of each batch sample. e.g. 4 or [3, 5]. | |
unmasked_channel_indices (`list`, *optional*): | |
Indices of channels that are not masked. | |
mask_value (`int`, *optional*, defaults to 0): | |
Values in the masked patches will be filled by `mask_value`. | |
Returns: | |
`tuple(torch.Tensor)`: inputs_mask, masked input, same shape as inputs Tensor and Mask tensor of shape `(bs, | |
num_channels , num_patch)` or `(bs, tsg1, tsg2, num_channels, num_patch)` | |
""" | |
if isinstance(num_forecast_mask_patches, int): | |
num_forecast_mask_patches = [num_forecast_mask_patches] | |
forecast_mask_ratios = [1 for _ in num_forecast_mask_patches] | |
batch_size, num_channels, sequence_length, num_features = inputs.shape | |
mask = torch.zeros(batch_size, num_channels, sequence_length, device=inputs.device) | |
t_list = [] | |
total_length = 0 | |
total_ratio = sum(forecast_mask_ratios) | |
for patch_length, ratio in zip(num_forecast_mask_patches, forecast_mask_ratios): | |
if patch_length <= 0 or patch_length >= sequence_length: | |
raise ValueError( | |
f"num_forecast_mask_patches {patch_length} should be greater than 0 and less than total patches." | |
) | |
temp_len = int(batch_size * ratio / total_ratio) | |
t_list.append([patch_length, ratio, temp_len]) | |
total_length += temp_len | |
t_list = sorted(t_list, key=lambda x: x[2]) | |
if total_length < batch_size: | |
t_list[0][2] = t_list[0][2] + (batch_size - total_length) | |
elif total_length > batch_size: | |
t_list[-1][2] = t_list[-1][2] + (total_length - batch_size) | |
batch1 = 0 | |
for patch_len, _, temp_len in t_list: | |
batch2 = batch1 + temp_len | |
mask[batch1:batch2, :, -patch_len:] = 1 | |
batch1 = batch2 | |
perm = torch.randperm(mask.shape[0]) | |
mask = mask[perm] | |
mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patch x patch_len] | |
if unmasked_channel_indices is not None: | |
mask[:, unmasked_channel_indices, :, :] = 0 | |
inputs_mask = inputs.masked_fill(mask.bool(), mask_value) | |
return inputs_mask, mask[..., 0] | |
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTPatchify with PatchTST->PatchTSMixer | |
class PatchTSMixerPatchify(nn.Module): | |
""" | |
A class to patchify the time series sequence into different patches | |
Returns: | |
`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)` | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
self.sequence_length = config.context_length | |
self.patch_length = config.patch_length | |
self.patch_stride = config.patch_stride | |
if self.sequence_length <= self.patch_length: | |
raise ValueError( | |
f"Sequence length ({self.sequence_length}) has to be greater than the patch length ({self.patch_length})" | |
) | |
# get the number of patches | |
self.num_patches = (max(self.sequence_length, self.patch_length) - self.patch_length) // self.patch_stride + 1 | |
new_sequence_length = self.patch_length + self.patch_stride * (self.num_patches - 1) | |
self.sequence_start = self.sequence_length - new_sequence_length | |
def forward(self, past_values: torch.Tensor): | |
""" | |
Parameters: | |
past_values (`torch.Tensor` of shape `(batch_size, sequence_length, num_channels)`, *required*): | |
Input for patchification | |
Returns: | |
`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)` | |
""" | |
sequence_length = past_values.shape[-2] | |
if sequence_length != self.sequence_length: | |
raise ValueError( | |
f"Input sequence length ({sequence_length}) doesn't match model configuration ({self.sequence_length})." | |
) | |
# output: [bs x new_sequence_length x num_channels] | |
output = past_values[:, self.sequence_start :, :] | |
# output: [bs x num_patches x num_input_channels x patch_length] | |
output = output.unfold(dimension=-2, size=self.patch_length, step=self.patch_stride) | |
# output: [bs x num_input_channels x num_patches x patch_length] | |
output = output.transpose(-2, -3).contiguous() | |
return output | |
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMasking with PatchTST->PatchTSMixer | |
class PatchTSMixerMasking(nn.Module): | |
""" | |
Class to perform random or forecast masking. | |
Parameters: | |
config (`PatchTSMixerConfig`): model config | |
Returns: | |
x_mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`) | |
Masked patched input | |
mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`) | |
Bool tensor indicating True on masked points | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
self.random_mask_ratio = config.random_mask_ratio | |
self.channel_consistent_masking = config.channel_consistent_masking | |
self.mask_type = config.mask_type | |
self.num_forecast_mask_patches = config.num_forecast_mask_patches | |
self.unmasked_channel_indices = config.unmasked_channel_indices | |
self.mask_value = config.mask_value | |
if self.unmasked_channel_indices is not None: | |
self.unmasked_channel_indices = sorted(self.unmasked_channel_indices) | |
def forward(self, patch_input: torch.Tensor): | |
""" | |
Parameters: | |
patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*): | |
Patch input | |
Return: | |
masked_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`) | |
Masked patched input | |
mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`) | |
Bool tensor indicating True on masked points | |
""" | |
if self.mask_type == "random": | |
masked_input, mask = random_masking( | |
inputs=patch_input, | |
mask_ratio=self.random_mask_ratio, | |
unmasked_channel_indices=self.unmasked_channel_indices, | |
channel_consistent_masking=self.channel_consistent_masking, | |
mask_value=self.mask_value, | |
) | |
elif self.mask_type == "forecast": | |
masked_input, mask = forecast_masking( | |
inputs=patch_input, | |
num_forecast_mask_patches=self.num_forecast_mask_patches, | |
unmasked_channel_indices=self.unmasked_channel_indices, | |
mask_value=self.mask_value, | |
) | |
else: | |
raise ValueError(f"Invalid mask type {self.mask_type}.") | |
# mask: [bs x num_input_channels x num_patch] | |
mask = mask.bool() | |
return masked_input, mask | |
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTStdScaler with PatchTST->PatchTSMixer | |
class PatchTSMixerStdScaler(nn.Module): | |
""" | |
Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by | |
subtracting from the mean and dividing by the standard deviation. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 | |
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True | |
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5 | |
def forward( | |
self, data: torch.Tensor, observed_indicator: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Parameters: | |
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): | |
input for Batch norm calculation | |
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): | |
Calculating the scale on the observed indicator. | |
Returns: | |
tuple of `torch.Tensor` of shapes | |
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, | |
`(batch_size, 1, num_input_channels)`) | |
""" | |
denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim) | |
denominator = denominator.clamp_min(1.0) | |
loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator | |
variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator | |
scale = torch.sqrt(variance + self.minimum_scale) | |
return (data - loc) / scale, loc, scale | |
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMeanScaler with PatchTST->PatchTSMixer | |
class PatchTSMixerMeanScaler(nn.Module): | |
""" | |
Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data | |
accordingly. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 | |
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True | |
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10 | |
self.default_scale = config.default_scale if hasattr(config, "default_scale") else None | |
def forward( | |
self, data: torch.Tensor, observed_indicator: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Parameters: | |
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): | |
input for Batch norm calculation | |
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): | |
Calculating the scale on the observed indicator. | |
Returns: | |
tuple of `torch.Tensor` of shapes | |
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, | |
`(batch_size, 1, num_input_channels)`) | |
""" | |
ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True) | |
num_observed = observed_indicator.sum(self.dim, keepdim=True) | |
scale = ts_sum / torch.clamp(num_observed, min=1) | |
# If `default_scale` is provided, we use it, otherwise we use the scale | |
# of the batch. | |
if self.default_scale is None: | |
batch_sum = ts_sum.sum(dim=0) | |
batch_observations = torch.clamp(num_observed.sum(0), min=1) | |
default_scale = torch.squeeze(batch_sum / batch_observations) | |
else: | |
default_scale = self.default_scale * torch.ones_like(scale) | |
# apply default scale where there are no observations | |
scale = torch.where(num_observed > 0, scale, default_scale) | |
# ensure the scale is at least `self.minimum_scale` | |
scale = torch.clamp(scale, min=self.minimum_scale) | |
scaled_data = data / scale | |
if not self.keepdim: | |
scale = scale.squeeze(dim=self.dim) | |
return scaled_data, torch.zeros_like(scale), scale | |
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTNOPScaler with PatchTST->PatchTSMixer | |
class PatchTSMixerNOPScaler(nn.Module): | |
""" | |
Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__() | |
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 | |
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True | |
def forward( | |
self, data: torch.Tensor, observed_indicator: torch.Tensor = None | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Parameters: | |
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): | |
input for Batch norm calculation | |
Returns: | |
tuple of `torch.Tensor` of shapes | |
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, | |
`(batch_size, 1, num_input_channels)`) | |
""" | |
scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) | |
loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) | |
return data, loc, scale | |
class PatchTSMixerEncoderOutput(ModelOutput): | |
""" | |
Base class for `PatchTSMixerEncoderOutput`, with potential hidden states. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`): | |
Hidden-state at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*): | |
Hidden-states of the model at the output of each layer. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
class PatchTSMixerEncoder(PatchTSMixerPreTrainedModel): | |
""" | |
Encoder for PatchTSMixer which inputs patched time-series and outputs patched embeddings. | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__(config) | |
self.use_return_dict = config.use_return_dict | |
self.patcher = nn.Linear(config.patch_length, config.d_model) | |
if config.use_positional_encoding: | |
self.positional_encoder = PatchTSMixerPositionalEncoding(config=config) | |
else: | |
self.positional_encoder = None | |
self.mlp_mixer_encoder = PatchTSMixerBlock(config=config) | |
# Initialize weights and apply final processing | |
if config.post_init: | |
self.post_init() | |
def forward( | |
self, | |
past_values: torch.Tensor, | |
output_hidden_states: Optional[bool] = False, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, PatchTSMixerEncoderOutput]: | |
r""" | |
Args: | |
past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`): | |
Context values of the time series. For a pretraining task, this denotes the input time series to | |
predict the masked portion. For a forecasting task, this denotes the history/past time series values. | |
Similarly, for classification or regression tasks, it denotes the appropriate context values of the | |
time series. | |
For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series, | |
it is greater than 1. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
Returns: | |
`torch.FloatTensor` of shape `(batch_size, n_vars, num_patches, d_model)` | |
""" | |
return_dict = return_dict if return_dict is not None else self.use_return_dict | |
# flatten [bs x num_patch x d_model]. common_channel/mix_channel: [bs x n_vars x num_patch x d_model] | |
patches = self.patcher(past_values) | |
# add positional encoder | |
if self.positional_encoder is not None: | |
patches = self.positional_encoder(patches) | |
last_hidden_state, hidden_states = self.mlp_mixer_encoder(patches, output_hidden_states=output_hidden_states) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
last_hidden_state, | |
hidden_states, | |
] | |
) | |
return PatchTSMixerEncoderOutput(last_hidden_state=last_hidden_state, hidden_states=hidden_states) | |
class PatchTSMixerModelOutput(ModelOutput): | |
""" | |
Base class for model's outputs, with potential hidden states. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`): | |
Hidden-state at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*): | |
Hidden-states of the model at the output of each layer. | |
patch_input (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, patch_length)`): | |
Patched input data to the model. | |
mask: (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches)`,*optional*): | |
Bool Tensor indicating True in masked patches and False otherwise. | |
loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*): | |
Gives the mean of the context window per channel. Used for revin denorm outside the model, if revin | |
enabled. | |
scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*): | |
Gives the std dev of the context window per channel. Used for revin denorm outside the model, if revin | |
enabled. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
patch_input: torch.FloatTensor = None | |
mask: Optional[torch.FloatTensor] = None | |
loc: Optional[torch.FloatTensor] = None | |
scale: Optional[torch.FloatTensor] = None | |
class PatchTSMixerModel(PatchTSMixerPreTrainedModel): | |
def __init__(self, config: PatchTSMixerConfig, mask_input: bool = False): | |
super().__init__(config) | |
self.use_return_dict = config.use_return_dict | |
self.encoder = PatchTSMixerEncoder(config) | |
self.patching = PatchTSMixerPatchify(config) | |
if mask_input is True: | |
self.masking = PatchTSMixerMasking(config) | |
else: | |
self.masking = None | |
if config.scaling == "mean": | |
self.scaler = PatchTSMixerMeanScaler(config) | |
elif config.scaling == "std" or config.scaling is True: | |
self.scaler = PatchTSMixerStdScaler(config) | |
else: | |
self.scaler = PatchTSMixerNOPScaler(config) | |
# Initialize weights and apply final processing | |
if config.post_init: | |
self.post_init() | |
def forward( | |
self, | |
past_values: torch.Tensor, | |
observed_mask: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = False, | |
return_dict: Optional[bool] = None, | |
) -> PatchTSMixerModelOutput: | |
r""" | |
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): | |
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected | |
in `[0, 1]`: | |
- 1 for values that are **observed**, | |
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). | |
Returns: | |
""" | |
return_dict = return_dict if return_dict is not None else self.use_return_dict | |
mask = None | |
if observed_mask is None: | |
observed_mask = torch.ones_like(past_values) | |
scaled_past_values, loc, scale = self.scaler(past_values, observed_mask) | |
patched_x = self.patching(scaled_past_values) # [batch_size x num_input_channels x num_patch x patch_length | |
enc_input = patched_x | |
if self.masking is not None: | |
enc_input, mask = self.masking(patched_x) | |
# enc_input: [batch_size x num_input_channels x num_patch x patch_length] | |
# mask: [batch_size x num_input_channels x num_patch] | |
encoder_output = self.encoder( | |
enc_input, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if isinstance(encoder_output, tuple): | |
encoder_output = PatchTSMixerEncoderOutput(*encoder_output) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
encoder_output.last_hidden_state, | |
encoder_output.hidden_states, | |
patched_x, | |
mask, | |
loc, | |
scale, | |
] | |
) | |
return PatchTSMixerModelOutput( | |
last_hidden_state=encoder_output.last_hidden_state, | |
hidden_states=encoder_output.hidden_states, | |
patch_input=patched_x, | |
mask=mask, | |
loc=loc, | |
scale=scale, | |
) | |
class PatchTSMixerForPreTrainingOutput(ModelOutput): | |
""" | |
Output type of [`PatchTSMixerForPreTrainingOutput`]. | |
Args: | |
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, patch_length)`): | |
Prediction output from the pretrain head. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*): | |
Hidden-states of the model at the output of each layer. | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`): | |
Backbone embeddings before passing through the head. | |
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`): | |
Total loss | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
prediction_outputs: torch.FloatTensor = None | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
class PatchTSMixerForPretraining(PatchTSMixerPreTrainedModel): | |
r""" | |
`PatchTSMixer` for mask pretraining. | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
Returns: | |
`None`. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__(config) | |
self.model = PatchTSMixerModel(config, mask_input=True) | |
self.head = PatchTSMixerPretrainHead(config=config) | |
self.masked_loss = config.masked_loss | |
self.use_return_dict = config.use_return_dict | |
# Initialize weights and apply final processing | |
if config.post_init: | |
self.post_init() | |
def forward( | |
self, | |
past_values: torch.Tensor, | |
observed_mask: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = False, | |
return_loss: bool = True, | |
return_dict: Optional[bool] = None, | |
) -> PatchTSMixerForPreTrainingOutput: | |
r""" | |
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): | |
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected | |
in `[0, 1]`: | |
- 1 for values that are **observed**, | |
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). | |
return_loss (`bool`, *optional*): | |
Whether to return the loss in the `forward` call. | |
Returns: | |
""" | |
return_dict = return_dict if return_dict is not None else self.use_return_dict | |
if self.masked_loss is True: | |
loss = torch.nn.MSELoss(reduction="none") | |
else: | |
loss = torch.nn.MSELoss(reduction="mean") | |
# past_values: tensor [batch_size x context_length x num_input_channels] | |
model_output = self.model( | |
past_values, | |
observed_mask=observed_mask, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) # x.last_hidden_state: [batch_size x nvars x num_patch x d_model] | |
if isinstance(model_output, tuple): | |
model_output = PatchTSMixerModelOutput(*model_output) | |
x_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x nvars x num_patch x patch_length] | |
if return_loss is True: | |
loss_val = loss(x_hat, model_output.patch_input) | |
else: | |
loss_val = None | |
# calculate masked_loss | |
if self.masked_loss is True and loss_val is not None: | |
loss_val = (loss_val.mean(dim=-1) * model_output.mask).sum() / (model_output.mask.sum() + 1e-10) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
loss_val, | |
x_hat, | |
model_output.last_hidden_state, | |
model_output.hidden_states, | |
] | |
) | |
return PatchTSMixerForPreTrainingOutput( | |
loss=loss_val, | |
prediction_outputs=x_hat, # tensor [batch_size x nvars x num_patch x patch_length] | |
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model] | |
hidden_states=model_output.hidden_states, | |
) | |
class PatchTSMixerForPredictionOutput(ModelOutput): | |
""" | |
Output type of [`PatchTSMixerForPredictionOutput`]. | |
Args: | |
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_input_channels)`): | |
Prediction output from the forecast head. | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`): | |
Backbone embeddings before passing through the head. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*): | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`): | |
Total loss. | |
loc (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`): | |
Input mean | |
scale (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`): | |
Input std dev | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
prediction_outputs: torch.FloatTensor = None | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
loc: torch.FloatTensor = None | |
scale: torch.FloatTensor = None | |
class SamplePatchTSMixerPredictionOutput(ModelOutput): | |
""" | |
Base class for time series model's predictions outputs that contains the sampled values from the chosen | |
distribution. | |
Args: | |
sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, prediction_length, number_channels)`): | |
Sampled values from the chosen distribution. | |
""" | |
sequences: torch.FloatTensor = None | |
class SamplePatchTSMixerRegressionOutput(ModelOutput): | |
""" | |
Base class for time series model's predictions outputs that contains the sampled values from the chosen | |
distribution. | |
Args: | |
sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, num_targets)` | |
Sampled values from the chosen distribution. | |
""" | |
sequences: torch.FloatTensor = None | |
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll | |
def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor: | |
""" | |
Computes the negative log likelihood loss from input distribution with respect to target. | |
""" | |
return -input.log_prob(target) | |
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average | |
def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor: | |
""" | |
Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero, | |
meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`. | |
Args: | |
input_tensor (`torch.FloatTensor`): | |
Input tensor, of which the average must be computed. | |
weights (`torch.FloatTensor`, *optional*): | |
Weights tensor, of the same shape as `input_tensor`. | |
dim (`int`, *optional*): | |
The dim along which to average `input_tensor`. | |
Returns: | |
`torch.FloatTensor`: The tensor with values averaged along the specified `dim`. | |
""" | |
if weights is not None: | |
weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor)) | |
sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0) | |
return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights | |
else: | |
return input_tensor.mean(dim=dim) | |
class PatchTSMixerForPrediction(PatchTSMixerPreTrainedModel): | |
r""" | |
`PatchTSMixer` for forecasting application. | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
Returns: | |
`None`. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__(config) | |
self.loss = config.loss | |
self.use_return_dict = config.use_return_dict | |
self.prediction_channel_indices = config.prediction_channel_indices | |
self.num_parallel_samples = config.num_parallel_samples | |
if config.loss == "mse": | |
self.distribution_output = None | |
else: | |
dim = config.prediction_length | |
distribution_output_map = { | |
"student_t": StudentTOutput, | |
"normal": NormalOutput, | |
"negative_binomial": NegativeBinomialOutput, | |
} | |
output_class = distribution_output_map.get(config.distribution_output, None) | |
if output_class is not None: | |
self.distribution_output = output_class(dim=dim) | |
else: | |
raise ValueError(f"Unknown distribution output {config.distribution_output}") | |
self.model = PatchTSMixerModel(config) | |
self.head = PatchTSMixerForPredictionHead( | |
config=config, | |
distribution_output=self.distribution_output, | |
) | |
# Initialize weights and apply final processing | |
if config.post_init: | |
self.post_init() | |
def forward( | |
self, | |
past_values: torch.Tensor, | |
observed_mask: Optional[torch.Tensor] = None, | |
future_values: Optional[torch.Tensor] = None, | |
output_hidden_states: Optional[bool] = False, | |
return_loss: bool = True, | |
return_dict: Optional[bool] = None, | |
) -> PatchTSMixerForPredictionOutput: | |
r""" | |
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): | |
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected | |
in `[0, 1]`: | |
- 1 for values that are **observed**, | |
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). | |
future_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,: | |
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target | |
values of the time series, that serve as labels for the model. The `future_values` is what the | |
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT | |
required for a pretraining task. | |
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want | |
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter, | |
pass the target data with all channels, as channel Filtering for both prediction and target will be | |
manually applied before the loss computation. | |
return_loss (`bool`, *optional*): | |
Whether to return the loss in the `forward` call. | |
Returns: | |
""" | |
if self.loss == "mse": | |
loss = nn.MSELoss(reduction="mean") | |
elif self.loss == "nll": | |
loss = nll | |
else: | |
raise ValueError("Invalid loss function: Allowed values: mse and nll") | |
return_dict = return_dict if return_dict is not None else self.use_return_dict | |
# past_values: tensor [batch_size x context_length x num_input_channels] | |
model_output = self.model( | |
past_values, | |
observed_mask=observed_mask, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) # model_output: [batch_size x nvars x num_patch x d_model] | |
if isinstance(model_output, tuple): | |
model_output = PatchTSMixerModelOutput(*model_output) | |
# tensor [batch_size x prediction_length x num_input_channels] | |
y_hat = self.head(model_output.last_hidden_state) | |
loss_val = None | |
if self.prediction_channel_indices is not None: | |
if self.distribution_output: | |
distribution = self.distribution_output.distribution( | |
y_hat, | |
loc=model_output.loc[..., self.prediction_channel_indices], | |
scale=model_output.scale[..., self.prediction_channel_indices], | |
) | |
if future_values is not None and return_loss is True: | |
loss_val = loss( | |
distribution, | |
future_values[..., self.prediction_channel_indices], | |
) | |
# take average of the loss | |
loss_val = weighted_average(loss_val) | |
else: | |
y_hat = ( | |
y_hat * model_output.scale[..., self.prediction_channel_indices] | |
+ model_output.loc[..., self.prediction_channel_indices] | |
) | |
if future_values is not None and return_loss is True: | |
loss_val = loss(y_hat, future_values[..., self.prediction_channel_indices]) | |
else: | |
if self.distribution_output: | |
distribution = self.distribution_output.distribution( | |
y_hat, loc=model_output.loc, scale=model_output.scale | |
) | |
if future_values is not None and return_loss is True: | |
loss_val = loss(distribution, future_values) | |
loss_val = weighted_average(loss_val) | |
else: | |
y_hat = y_hat * model_output.scale + model_output.loc | |
if future_values is not None and return_loss is True: | |
loss_val = loss(y_hat, future_values) | |
if self.prediction_channel_indices is not None: | |
loc = model_output.loc[..., self.prediction_channel_indices] | |
scale = model_output.scale[..., self.prediction_channel_indices] | |
else: | |
loc = model_output.loc | |
scale = model_output.scale | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
loss_val, | |
y_hat, | |
model_output.last_hidden_state, | |
model_output.hidden_states, | |
loc, | |
scale, | |
] | |
) | |
return PatchTSMixerForPredictionOutput( | |
loss=loss_val, | |
prediction_outputs=y_hat, # tensor [batch_size x prediction_length x num_input_channels] | |
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model] | |
hidden_states=model_output.hidden_states, | |
loc=loc, | |
scale=scale, | |
) | |
def generate( | |
self, | |
past_values: torch.Tensor, | |
observed_mask: Optional[torch.Tensor] = None, | |
) -> SamplePatchTSMixerPredictionOutput: | |
""" | |
Generate sequences of sample predictions from a model with a probability distribution head. | |
Args: | |
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`): | |
Past values of the time series that serves as context in order to predict the future. | |
observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): | |
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected | |
in `[0, 1]`: | |
- 1 for values that are **observed**, | |
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). | |
Return: | |
[`SamplePatchTSMixerPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, | |
number of samples, prediction_length, num_input_channels)`. | |
""" | |
# get number of samples | |
num_parallel_samples = self.num_parallel_samples | |
# get model output | |
outputs = self( | |
past_values=past_values, | |
future_values=None, | |
observed_mask=observed_mask, | |
output_hidden_states=False, | |
) | |
# get distribution | |
distribution = self.distribution_output.distribution( | |
outputs.prediction_outputs, loc=outputs.loc, scale=outputs.scale | |
) | |
# get samples: list of [batch_size x prediction_length x num_channels] | |
samples = [distribution.sample() for _ in range(num_parallel_samples)] | |
# stack tensors | |
samples = torch.stack(samples, dim=1) # [batch_size x num_samples x prediction_length x num_channels] | |
return SamplePatchTSMixerPredictionOutput(sequences=samples) | |
class PatchTSMixerForTimeSeriesClassificationOutput(ModelOutput): | |
""" | |
Output type of [`PatchTSMixerForTimeSeriesClassificationOutput`]. | |
Args: | |
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_labels)`): | |
Prediction output from the classfication head. | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`): | |
Backbone embeddings before passing through the head. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*): | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`): | |
Total loss. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
prediction_outputs: torch.FloatTensor = None | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
class PatchTSMixerForTimeSeriesClassification(PatchTSMixerPreTrainedModel): | |
r""" | |
`PatchTSMixer` for classification application. | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
Returns: | |
`None`. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__(config) | |
self.model = PatchTSMixerModel(config) | |
self.head = PatchTSMixerLinearHead( | |
config=config, | |
) | |
self.use_return_dict = config.use_return_dict | |
if config.scaling in ["std", "mean", True]: | |
self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches) | |
else: | |
self.inject_scale = None | |
# Initialize weights and apply final processing | |
if config.post_init: | |
self.post_init() | |
def forward( | |
self, | |
past_values: torch.Tensor, | |
target_values: torch.Tensor = None, | |
output_hidden_states: Optional[bool] = False, | |
return_loss: bool = True, | |
return_dict: Optional[bool] = None, | |
) -> PatchTSMixerForTimeSeriesClassificationOutput: | |
r""" | |
target_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting, | |
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target | |
values of the time series, that serve as labels for the model. The `target_values` is what the | |
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT | |
required for a pretraining task. | |
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want | |
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter, | |
pass the target data with all channels, as channel Filtering for both prediction and target will be | |
manually applied before the loss computation. | |
For a classification task, it has a shape of `(batch_size,)`. | |
For a regression task, it has a shape of `(batch_size, num_targets)`. | |
return_loss (`bool`, *optional*): | |
Whether to return the loss in the `forward` call. | |
Returns: | |
""" | |
loss = torch.nn.CrossEntropyLoss() | |
return_dict = return_dict if return_dict is not None else self.use_return_dict | |
model_output = self.model( | |
past_values, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) # x: [batch_size x nvars x num_patch x d_model] | |
if isinstance(model_output, tuple): | |
model_output = PatchTSMixerModelOutput(*model_output) | |
if self.inject_scale is not None: | |
model_output.last_hidden_state = self.inject_scale( | |
model_output.last_hidden_state, | |
loc=model_output.loc, | |
scale=model_output.scale, | |
) # x: [batch_size x nvars x num_patch x d_model] | |
y_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x n_labels] | |
if target_values is not None and return_loss is True: | |
loss_val = loss(y_hat, target_values) | |
else: | |
loss_val = None | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
loss_val, | |
y_hat, | |
model_output.last_hidden_state, | |
model_output.hidden_states, | |
] | |
) | |
return PatchTSMixerForTimeSeriesClassificationOutput( | |
loss=loss_val, | |
prediction_outputs=y_hat, # tensor [batch_size x n_labels] | |
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model] | |
hidden_states=model_output.hidden_states, | |
) | |
class PatchTSMixerForRegressionOutput(ModelOutput): | |
""" | |
Output type of [`PatchTSMixerForRegressionOutput`]. | |
Args: | |
regression_outputs (`torch.FloatTensor` of shape `(batch_size, num_targets)`): | |
Prediction output from the regression head. | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`): | |
Backbone embeddings before passing through the head. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*): | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`): | |
Total loss. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
regression_outputs: torch.FloatTensor = None | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
class InjectScalerStatistics4D(nn.Module): | |
def __init__(self, d_model: int, num_patches: int, expansion: int = 2): | |
super().__init__() | |
self.inverse_trans_expansion = nn.Linear(d_model + 2, expansion * d_model) | |
self.inverse_trans_compression = nn.Linear(expansion * d_model, d_model) | |
self.map_scale_expansion = nn.Linear(2, 2 * expansion) | |
self.map_scale_compression = nn.Linear(2 * expansion, 2) | |
self.num_patches = num_patches | |
def forward(self, inputs: torch.Tensor, loc: torch.Tensor, scale: torch.Tensor): | |
""" | |
Args: | |
inputs (`torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)`) | |
loc (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`) | |
scale (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`) | |
Returns: | |
`torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)` | |
""" | |
mean = loc.transpose(-1, -2) # [batch_size x n_channels x 1 ] | |
mean = mean.unsqueeze(-2) # [batch_size x n_channels x 1 x 1] | |
mean = mean.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1] | |
stdev = scale.transpose(-1, -2) # [batch_size x n_channels x 1 ] | |
stdev = stdev.unsqueeze(-2) # [batch_size x n_channels x 1 x 1] | |
stdev = stdev.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1] | |
concat_stats = torch.cat([mean, stdev], dim=-1) # [batch_size x n_channels x num_patch x 2] | |
concat_stats = self.map_scale_expansion(concat_stats) # [batch_size x n_channels x num_patch x (2*expansion)] | |
concat_stats = self.map_scale_compression(concat_stats) # [batch_size x n_channels x num_patch x 2] | |
inputs = torch.cat([inputs, concat_stats], dim=-1) # [batch_size x channels x num_patch x d_model+2] | |
inputs = self.inverse_trans_expansion(inputs) # [batch_size x channels x num_patch x (expansion*d_model)] | |
inputs = self.inverse_trans_compression(inputs) # [batch_size x channels x num_patch x d_model] | |
return inputs | |
class PatchTSMixerForRegression(PatchTSMixerPreTrainedModel): | |
r""" | |
`PatchTSMixer` for regression application. | |
Args: | |
config (`PatchTSMixerConfig`): | |
Configuration. | |
Returns: | |
`None`. | |
""" | |
def __init__(self, config: PatchTSMixerConfig): | |
super().__init__(config) | |
self.model = PatchTSMixerModel(config) | |
self.loss = config.loss | |
self.distribution_output = config.distribution_output | |
self.use_return_dict = config.use_return_dict | |
self.num_parallel_samples = config.num_parallel_samples | |
if config.loss == "mse": | |
self.distribution_output = None | |
else: | |
distribution_output_map = { | |
"student_t": StudentTOutput, | |
"normal": NormalOutput, | |
"negative_binomial": NegativeBinomialOutput, | |
} | |
output_class = distribution_output_map.get(config.distribution_output) | |
if output_class is not None: | |
self.distribution_output = output_class(dim=config.num_targets) | |
else: | |
raise ValueError(f"Unknown distribution output {config.distribution_output}") | |
if config.scaling in ["std", "mean", True]: | |
self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches) | |
else: | |
self.inject_scale = None | |
self.head = PatchTSMixerLinearHead( | |
config=config, | |
distribution_output=self.distribution_output, | |
) | |
# Initialize weights and apply final processing | |
if config.post_init: | |
self.post_init() | |
def forward( | |
self, | |
past_values: torch.Tensor, | |
target_values: torch.Tensor = None, | |
output_hidden_states: Optional[bool] = False, | |
return_loss: bool = True, | |
return_dict: Optional[bool] = None, | |
) -> PatchTSMixerForRegressionOutput: | |
r""" | |
target_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting, | |
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target | |
values of the time series, that serve as labels for the model. The `target_values` is what the | |
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT | |
required for a pretraining task. | |
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want | |
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter, | |
pass the target data with all channels, as channel Filtering for both prediction and target will be | |
manually applied before the loss computation. | |
For a classification task, it has a shape of `(batch_size,)`. | |
For a regression task, it has a shape of `(batch_size, num_targets)`. | |
return_loss (`bool`, *optional*): | |
Whether to return the loss in the `forward` call. | |
Returns: | |
""" | |
if self.loss == "mse": | |
loss = nn.MSELoss(reduction="mean") | |
elif self.loss == "nll": | |
loss = nll | |
else: | |
raise ValueError("Invalid loss function: Allowed values: mse and nll") | |
return_dict = return_dict if return_dict is not None else self.use_return_dict | |
model_output = self.model( | |
past_values, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) # model_output: [batch_size x nvars x num_patch x d_model] | |
if isinstance(model_output, tuple): | |
model_output = PatchTSMixerModelOutput(*model_output) | |
if self.inject_scale is not None: | |
model_output.last_hidden_state = self.inject_scale( | |
model_output.last_hidden_state, | |
loc=model_output.loc, | |
scale=model_output.scale, | |
) # x: [batch_size x nvars x num_patch x d_model] | |
y_hat = self.head(model_output.last_hidden_state) # [batch_size x num_targets] | |
if target_values is not None and return_loss is True: | |
if self.distribution_output: | |
if self.distribution_output == "negative_binomial" and torch.any(target_values < 0): | |
raise Exception("target_values cannot be negative for negative_binomial distribution.") | |
distribution = self.distribution_output.distribution(y_hat) | |
# y_hat should be a 2-tuple, each with dimension [bs, num_targets] | |
y_hat = tuple([item.view(-1, self.config.num_targets) for item in y_hat]) | |
loss_val = loss(distribution, target_values) | |
# take average of the loss | |
loss_val = weighted_average(loss_val) | |
else: | |
loss_val = loss(y_hat, target_values) | |
else: | |
loss_val = None | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
loss_val, | |
y_hat, | |
model_output.last_hidden_state, | |
model_output.hidden_states, | |
] | |
) | |
return PatchTSMixerForRegressionOutput( | |
loss=loss_val, | |
regression_outputs=y_hat, # tensor [batch_size x num_targets] | |
last_hidden_state=model_output.last_hidden_state, # [batch_size x nvars x num_patch x d_model] | |
hidden_states=model_output.hidden_states, | |
) | |
def generate( | |
self, | |
past_values: torch.Tensor, | |
) -> SamplePatchTSMixerRegressionOutput: | |
""" | |
Generate sequences of sample predictions from a model with a probability distribution head. | |
Args: | |
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`): | |
Past values of the time series that serves as context in order to predict the target values. | |
Return: | |
[`SamplePatchTSMixerRegressionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, | |
number of samples, num_targets)`. | |
""" | |
# get number of samples | |
num_parallel_samples = self.num_parallel_samples | |
# get model output | |
outputs = self( | |
past_values=past_values, | |
target_values=None, | |
output_hidden_states=False, | |
) | |
# get distribution | |
distribution = self.distribution_output.distribution(outputs.regression_outputs) | |
# get samples | |
samples = [ | |
distribution.sample() for _ in range(num_parallel_samples) | |
] # samples: list of [batch_size x num_targets] | |
# stack tensors | |
# [batch_size x num_samples x num_targets] | |
samples = torch.stack(samples, dim=1).view(-1, num_parallel_samples, self.config.num_targets) | |
return SamplePatchTSMixerRegressionOutput(sequences=samples) | |