Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/pegasus
/tokenization_pegasus.py
# coding=utf-8 | |
# Copyright 2020 Google and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from shutil import copyfile | |
from typing import Any, Dict, List, Optional, Tuple | |
import sentencepiece as spm | |
from ...tokenization_utils import AddedToken, PreTrainedTokenizer | |
from ...utils import logging | |
SPIECE_UNDERLINE = "▁" | |
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} | |
logger = logging.get_logger(__name__) | |
# TODO ArthurZ refactor this to only use the added_tokens_encoder | |
class PegasusTokenizer(PreTrainedTokenizer): | |
r""" | |
Construct a PEGASUS tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). | |
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
this superclass for more information regarding those methods. | |
Args: | |
vocab_file (`str`): | |
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that | |
contains the vocabulary necessary to instantiate a tokenizer. | |
pad_token (`str`, *optional*, defaults to `"<pad>"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
eos_token (`str`, *optional*, defaults to `"</s>"`): | |
The end of sequence token. | |
<Tip> | |
When building a sequence using special tokens, this is not the token that is used for the end of sequence. | |
The token used is the `sep_token`. | |
</Tip> | |
unk_token (`str`, *optional*, defaults to `"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
mask_token (`str`, *optional*, defaults to `"<mask_2>"`): | |
The token used for masking single token values. This is the token used when training this model with masked | |
language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining. | |
It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive | |
Summarization](https://arxiv.org/pdf/1912.08777.pdf). | |
mask_token_sent (`str`, *optional*, defaults to `"<mask_1>"`): | |
The token used for masking whole target sentences. This is the token used when training this model with gap | |
sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during | |
pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for | |
Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf). | |
additional_special_tokens (`List[str]`, *optional*): | |
Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and | |
<unk_2, ..., unk_102> are used as additional special tokens corresponding to the [original PEGASUS | |
tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66) | |
that uses the tokens 2 - 104 only for pretraining | |
sp_model_kwargs (`dict`, *optional*): | |
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for | |
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, | |
to set: | |
- `enable_sampling`: Enable subword regularization. | |
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. | |
- `nbest_size = {0,1}`: No sampling is performed. | |
- `nbest_size > 1`: samples from the nbest_size results. | |
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) | |
using forward-filtering-and-backward-sampling algorithm. | |
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for | |
BPE-dropout. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, | |
vocab_file, | |
pad_token="<pad>", | |
eos_token="</s>", | |
unk_token="<unk>", | |
mask_token="<mask_2>", | |
mask_token_sent="<mask_1>", | |
additional_special_tokens=None, | |
offset=103, # entries 2 - 104 are only used for pretraining | |
sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
**kwargs, | |
) -> None: | |
self.offset = offset | |
if additional_special_tokens is not None: | |
if not isinstance(additional_special_tokens, list): | |
raise TypeError( | |
f"additional_special_tokens should be of type {type(list)}, but is" | |
f" {type(additional_special_tokens)}" | |
) | |
additional_special_tokens_extended = ( | |
([mask_token_sent] + additional_special_tokens) | |
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None | |
else additional_special_tokens | |
) | |
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken | |
additional_special_tokens_extended += [ | |
f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1) | |
] | |
if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended): | |
raise ValueError( | |
"Please make sure that the provided additional_special_tokens do not contain an incorrectly" | |
f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." | |
) | |
additional_special_tokens = additional_special_tokens_extended | |
else: | |
additional_special_tokens_extended = [] | |
additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else [] | |
additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)] | |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | |
self.mask_token_sent = mask_token_sent | |
self.vocab_file = vocab_file | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.Load(vocab_file) | |
_added_tokens_decoder = { | |
0: AddedToken(str(pad_token), special=True), | |
1: AddedToken(str(eos_token), special=True), | |
} | |
if self.mask_token_sent is not None: | |
_added_tokens_decoder[2] = AddedToken(mask_token_sent, special=True) | |
_added_tokens_decoder[3] = AddedToken(str(mask_token), special=True) | |
for i in range(2, self.offset): | |
_added_tokens_decoder[len(_added_tokens_decoder)] = AddedToken(f"<unk_{i}>", special=True) | |
# Force update as we want to make sure vocab is enforced (same as fast) | |
self._added_tokens_decoder = kwargs.pop("added_tokens_decoder", {}) | |
self._added_tokens_decoder.update(_added_tokens_decoder) | |
super().__init__( | |
eos_token=eos_token, | |
unk_token=unk_token, | |
mask_token=mask_token, | |
pad_token=pad_token, | |
mask_token_sent=mask_token_sent, | |
offset=offset, | |
additional_special_tokens=additional_special_tokens, | |
sp_model_kwargs=self.sp_model_kwargs, | |
**kwargs, | |
) | |
def vocab_size(self) -> int: | |
return len(self.sp_model) + self.offset | |
def get_vocab(self) -> Dict[str, int]: | |
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
def __getstate__(self): | |
state = self.__dict__.copy() | |
state["sp_model"] = None | |
return state | |
def __setstate__(self, d): | |
self.__dict__ = d | |
# for backward compatibility | |
if not hasattr(self, "sp_model_kwargs"): | |
self.sp_model_kwargs = {} | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.Load(self.vocab_file) | |
def _tokenize(self, text: str) -> List[str]: | |
"""Take as input a string and return a list of strings (tokens) for words/sub-words""" | |
return self.sp_model.encode(text, out_type=str) | |
def _convert_token_to_id(self, token: str) -> int: | |
"""Converts a token (str) to an id using the vocab.""" | |
sp_id = self.sp_model.piece_to_id(token) | |
return sp_id + self.offset | |
def _convert_id_to_token(self, index: int) -> str: | |
"""Converts an index (integer) to a token (str) using the vocab.""" | |
if index < self.offset: | |
return self.sp_model.IdToPiece(index) | |
token = self.sp_model.IdToPiece(index - self.offset) | |
return token | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
current_sub_tokens = [] | |
out_string = "" | |
for token in tokens: | |
# make sure that special tokens are not decoded using sentencepiece model | |
if token in self.all_special_tokens: | |
out_string += self.sp_model.decode(current_sub_tokens) + token | |
current_sub_tokens = [] | |
else: | |
current_sub_tokens.append(token) | |
out_string += self.sp_model.decode(current_sub_tokens) | |
return out_string.strip() | |
def num_special_tokens_to_add(self, pair=False): | |
"""Just EOS""" | |
return 1 | |
def _special_token_mask(self, seq): | |
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp | |
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special | |
return [1 if x in all_special_ids else 0 for x in seq] | |
def get_special_tokens_mask( | |
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
"""Get list where entries are [1] if a token is [eos] or [pad] else 0.""" | |
if already_has_special_tokens: | |
return self._special_token_mask(token_ids_0) | |
elif token_ids_1 is None: | |
return self._special_token_mask(token_ids_0) + [1] | |
else: | |
return self._special_token_mask(token_ids_0 + token_ids_1) + [1] | |
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating | |
and adding special tokens. A PEGASUS sequence has the following format, where `X` represents the sequence: | |
- single sequence: `X </s>` | |
- pair of sequences: `A B </s>` (not intended use) | |
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a | |
separator. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
""" | |
if token_ids_1 is None: | |
return token_ids_0 + [self.eos_token_id] | |
# We don't expect to process pairs, but leave the pair logic for API consistency | |
return token_ids_0 + token_ids_1 + [self.eos_token_id] | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
out_vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): | |
copyfile(self.vocab_file, out_vocab_file) | |
elif not os.path.isfile(self.vocab_file): | |
with open(out_vocab_file, "wb") as fi: | |
content_spiece_model = self.sp_model.serialized_model_proto() | |
fi.write(content_spiece_model) | |
return (out_vocab_file,) | |