Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/pix2struct
/configuration_pix2struct.py
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Pix2Struct model configuration""" | |
import os | |
from typing import Union | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class Pix2StructTextConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Pix2StructTextModel`]. It is used to instantiate | |
a Pix2Struct text model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the Pix2Struct text decoder used by | |
the [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 50244): | |
Vocabulary size of the `Pix2Struct` text model. Defines the number of different tokens that can be | |
represented by the `inputs_ids` passed when calling [`Pix2StructTextModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
d_kv (`int`, *optional*, defaults to 64): | |
Dimensionality of the key, query, value projections in each attention head. | |
d_ff (`int`, *optional*, defaults to 2048): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
relative_attention_num_buckets (`int`, *optional*, defaults to 32): | |
The number of buckets to use for each attention layer. | |
relative_attention_max_distance (`int`, *optional*, defaults to 128): | |
The maximum distance of the longer sequences for the bucket separation. | |
dropout_rate (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-6): | |
The epsilon used by the layer normalization layers. | |
initializer_factor (`float`, *optional*, defaults to 1.0): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
dense_act_fn (`Union[Callable, str]`, *optional*, defaults to `"gelu_new"`): | |
The non-linear activation function (function or string). | |
decoder_start_token_id (`int`, *optional*, defaults to 0): | |
The id of the `decoder_start_token_id` token. | |
use_cache (`bool`, *optional*, defaults to `False`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
pad_token_id (`int`, *optional*, defaults to 0): | |
The id of the `padding` token. | |
eos_token_id (`int`, *optional*, defaults to 1): | |
The id of the `end-of-sequence` token. | |
Example: | |
```python | |
>>> from transformers import Pix2StructTextConfig, Pix2StructTextModel | |
>>> # Initializing a Pix2StructTextConfig with google/pix2struct-base style configuration | |
>>> configuration = Pix2StructTextConfig() | |
>>> # Initializing a Pix2StructTextModel (with random weights) from the google/pix2struct-base style configuration | |
>>> model = Pix2StructTextModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "pix2struct_text_model" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = { | |
"hidden_size": "hidden_size", | |
"num_attention_heads": "num_heads", | |
"num_hidden_layers": "num_layers", | |
} | |
def __init__( | |
self, | |
vocab_size=50244, | |
hidden_size=768, | |
d_kv=64, | |
d_ff=2048, | |
num_layers=12, | |
num_heads=12, | |
relative_attention_num_buckets=32, | |
relative_attention_max_distance=128, | |
dropout_rate=0.1, | |
layer_norm_epsilon=1e-6, | |
initializer_factor=1.0, | |
dense_act_fn="gelu_new", | |
decoder_start_token_id=0, | |
use_cache=False, | |
pad_token_id=0, | |
eos_token_id=1, | |
tie_word_embeddings=False, | |
is_decoder=True, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.d_kv = d_kv | |
self.d_ff = d_ff | |
self.num_layers = num_layers | |
self.num_heads = num_heads | |
self.relative_attention_num_buckets = relative_attention_num_buckets | |
self.relative_attention_max_distance = relative_attention_max_distance | |
self.dropout_rate = dropout_rate | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_factor = initializer_factor | |
self.use_cache = use_cache | |
self.eos_token_id = eos_token_id | |
self.decoder_start_token_id = decoder_start_token_id | |
# for backwards compatibility | |
self.dense_act_fn = dense_act_fn | |
super().__init__( | |
pad_token_id=pad_token_id, | |
eos_token_id=eos_token_id, | |
decoder_start_token_id=decoder_start_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
is_decoder=is_decoder, | |
**kwargs, | |
) | |
def from_pretrained( | |
cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs | |
) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs) | |
# get the text config dict if we are loading from Pix2StructConfig | |
if config_dict.get("model_type") == "pix2struct": | |
config_dict = config_dict["text_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class Pix2StructVisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Pix2StructVisionModel`]. It is used to | |
instantiate a Pix2Struct vision model according to the specified arguments, defining the model architecture. | |
Instantiating a configuration defaults will yield a similar configuration to that of the Pix2Struct-base | |
[google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
patch_embed_hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the input patch_embedding layer in the Transformer encoder. | |
d_ff (`int`, *optional*, defaults to 2048): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
d_kv (`int`, *optional*, defaults to 64): | |
Dimensionality of the key, query, value projections per attention head. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
dense_act_fn (`str` or `function`, *optional*, defaults to `"gelu_new"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the layer normalization layers. | |
dropout_rate (`float`, *optional*, defaults to 0.0): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 1e-10): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
initializer_factor (`float`, *optional*, defaults to 1.0): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
seq_len (`int`, *optional*, defaults to 4096): | |
Maximum sequence length (here number of patches) supported by the model. | |
relative_attention_num_buckets (`int`, *optional*, defaults to 32): | |
The number of buckets to use for each attention layer. | |
relative_attention_max_distance (`int`, *optional*, defaults to 128): | |
The maximum distance (in tokens) to use for each attention layer. | |
Example: | |
```python | |
>>> from transformers import Pix2StructVisionConfig, Pix2StructVisionModel | |
>>> # Initializing a Pix2StructVisionConfig with google/pix2struct-base style configuration | |
>>> configuration = Pix2StructVisionConfig() | |
>>> # Initializing a Pix2StructVisionModel (with random weights) from the google/pix2struct-base style configuration | |
>>> model = Pix2StructVisionModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "pix2struct_vision_model" | |
def __init__( | |
self, | |
hidden_size=768, | |
patch_embed_hidden_size=768, | |
d_ff=2048, | |
d_kv=64, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
dense_act_fn="gelu_new", | |
layer_norm_eps=1e-6, | |
dropout_rate=0.0, | |
attention_dropout=0.0, | |
initializer_range=1e-10, | |
initializer_factor=1.0, | |
seq_len=4096, | |
relative_attention_num_buckets=32, | |
relative_attention_max_distance=128, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.patch_embed_hidden_size = patch_embed_hidden_size | |
self.d_ff = d_ff | |
self.dropout_rate = dropout_rate | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.initializer_range = initializer_range | |
self.initializer_factor = initializer_factor | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.dense_act_fn = dense_act_fn | |
self.seq_len = seq_len | |
self.relative_attention_num_buckets = relative_attention_num_buckets | |
self.relative_attention_max_distance = relative_attention_max_distance | |
self.d_kv = d_kv | |
def from_pretrained( | |
cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs | |
) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs) | |
# get the vision config dict if we are loading from Pix2StructConfig | |
if config_dict.get("model_type") == "pix2struct": | |
config_dict = config_dict["vision_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class Pix2StructConfig(PretrainedConfig): | |
r""" | |
[`Pix2StructConfig`] is the configuration class to store the configuration of a | |
[`Pix2StructForConditionalGeneration`]. It is used to instantiate a Pix2Struct model according to the specified | |
arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will | |
yield a similar configuration to that of the Pix2Struct-base | |
[google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
text_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`Pix2StructTextConfig`]. | |
vision_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`Pix2StructVisionConfig`]. | |
initializer_factor (`float`, *optional*, defaults to 1.0): | |
Factor to multiply the initialization range with. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
is_vqa (`bool`, *optional*, defaults to `False`): | |
Whether the model has been fine-tuned for VQA or not. | |
kwargs (*optional*): | |
Dictionary of keyword arguments. | |
Example: | |
```python | |
>>> from transformers import Pix2StructConfig, Pix2StructForConditionalGeneration | |
>>> # Initializing a Pix2StructConfig with google/pix2struct-base style configuration | |
>>> configuration = Pix2StructConfig() | |
>>> # Initializing a Pix2StructForConditionalGeneration (with random weights) from the google/pix2struct-base style configuration | |
>>> model = Pix2StructForConditionalGeneration(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
>>> # We can also initialize a Pix2StructConfig from a Pix2StructTextConfig and a Pix2StructVisionConfig | |
>>> # Initializing a Pix2Struct text and Pix2Struct vision configuration | |
>>> config_text = Pix2StructTextConfig() | |
>>> config_vision = Pix2StructVisionConfig() | |
>>> config = Pix2StructConfig.from_text_vision_configs(config_text, config_vision) | |
```""" | |
model_type = "pix2struct" | |
def __init__( | |
self, | |
text_config=None, | |
vision_config=None, | |
initializer_factor=1.0, | |
initializer_range=0.02, | |
is_vqa=False, | |
tie_word_embeddings=False, | |
is_encoder_decoder=True, | |
**kwargs, | |
): | |
super().__init__(tie_word_embeddings=tie_word_embeddings, is_encoder_decoder=is_encoder_decoder, **kwargs) | |
if text_config is None: | |
text_config = {} | |
logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values.") | |
if vision_config is None: | |
vision_config = {} | |
logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values.") | |
self.text_config = Pix2StructTextConfig(**text_config) | |
self.vision_config = Pix2StructVisionConfig(**vision_config) | |
self.decoder_start_token_id = self.text_config.decoder_start_token_id | |
self.pad_token_id = self.text_config.pad_token_id | |
self.eos_token_id = self.text_config.eos_token_id | |
self.initializer_factor = initializer_factor | |
self.initializer_range = initializer_range | |
self.text_config.initializer_range = self.initializer_range | |
self.vision_config.initializer_range = self.initializer_range | |
self.is_vqa = is_vqa | |
def from_text_vision_configs( | |
cls, text_config: Pix2StructTextConfig, vision_config: Pix2StructVisionConfig, **kwargs | |
): | |
r""" | |
Instantiate a [`Pix2StructConfig`] (or a derived class) from pix2struct text model configuration and pix2struct | |
vision model configuration. | |
Returns: | |
[`Pix2StructConfig`]: An instance of a configuration object | |
""" | |
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) | |