Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/pix2struct
/modeling_pix2struct.py
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. & Google team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Pix2Struct modeling file""" | |
import math | |
from typing import Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPooling, | |
CausalLMOutputWithCrossAttentions, | |
Seq2SeqLMOutput, | |
Seq2SeqModelOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import ALL_LAYERNORM_LAYERS | |
from ...utils import ( | |
DUMMY_INPUTS, | |
DUMMY_MASK, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_torch_fx_proxy, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_pix2struct import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisionConfig | |
logger = logging.get_logger(__name__) | |
# General docstring | |
_CONFIG_FOR_DOC = "Pix2StructConfig" | |
# Adapted from transformers.models.t5.modeling_t5.T5LayerNorm with T5->Pix2Struct | |
class Pix2StructLayerNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
Construct a layernorm module in the T5 style. No bias and no subtraction of mean. | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean | |
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated | |
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for | |
# half-precision inputs is done in fp32 | |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
# convert into half-precision if necessary | |
if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
hidden_states = hidden_states.to(self.weight.dtype) | |
return self.weight * hidden_states | |
try: | |
from apex.normalization import FusedRMSNorm | |
Pix2StructLayerNorm = FusedRMSNorm # noqa | |
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of Pix2StructLayerNorm") | |
except ImportError: | |
# using the normal Pix2StructLayerNorm | |
pass | |
except Exception: | |
logger.warning("Discovered apex but it failed to load, falling back to Pix2StructLayerNorm") | |
pass | |
ALL_LAYERNORM_LAYERS.append(Pix2StructLayerNorm) | |
class Pix2StructVisionEmbeddings(nn.Module): | |
r""" | |
Construct the embeddings from patch. In `Pix2Struct` the input is different from classic Vision-transformer models. | |
Here the input is a sequence of `seq_len` flattened patches that also combines padding patches (tokens). Each patch | |
is represented by a vector of `hidden_size` values. | |
""" | |
def __init__(self, config: Pix2StructConfig) -> None: | |
super().__init__() | |
self.patch_projection = nn.Linear(config.patch_embed_hidden_size, config.hidden_size) | |
self.row_embedder = nn.Embedding(config.seq_len, config.hidden_size) | |
self.column_embedder = nn.Embedding(config.seq_len, config.hidden_size) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward(self, flattened_patches: torch.Tensor) -> torch.Tensor: | |
# the row and column indices are stored in the first and second position of the flattened_patches | |
# flattened_patches: `batch_size`, `seq_len`, `hidden_size` + 2 | |
row_indices = flattened_patches[:, :, 0].long() | |
col_indices = flattened_patches[:, :, 1].long() | |
flattened_patches = flattened_patches[:, :, 2:] | |
embeddings = self.patch_projection(flattened_patches) | |
row_embeddings = self.row_embedder(row_indices) | |
col_embeddings = self.column_embedder(col_indices) | |
# sum all embeddings together | |
embeddings = embeddings + row_embeddings + col_embeddings | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class Pix2StructVisionAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.key_value_proj_dim = config.d_kv | |
self.n_heads = config.num_attention_heads | |
self.dropout = config.attention_dropout | |
self.inner_dim = self.n_heads * self.key_value_proj_dim | |
# Mesh TensorFlow initialization to avoid scaling before softmax | |
self.query = nn.Linear(self.hidden_size, self.inner_dim, bias=False) | |
self.key = nn.Linear(self.hidden_size, self.inner_dim, bias=False) | |
self.value = nn.Linear(self.hidden_size, self.inner_dim, bias=False) | |
self.output = nn.Linear(self.inner_dim, self.hidden_size, bias=False) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
output_attentions=False, | |
): | |
""" | |
Self-attention block | |
""" | |
# Input is (batch_size, seq_length, dim) | |
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) | |
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) | |
batch_size, seq_length = hidden_states.shape[:2] | |
def to_projection_shape(states): | |
"""projection""" | |
return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) | |
# get query states | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
query_states = to_projection_shape(self.query(hidden_states)) | |
# get key/value states | |
key_states = to_projection_shape(self.key(hidden_states)) | |
value_states = to_projection_shape(self.value(hidden_states)) | |
# compute scores | |
# equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 | |
scores = torch.matmul(query_states, key_states.transpose(3, 2)) | |
if position_bias is None: | |
position_bias = torch.zeros( | |
(1, self.n_heads, seq_length, seq_length), device=scores.device, dtype=scores.dtype | |
) | |
if self.gradient_checkpointing and self.training: | |
position_bias.requires_grad = True | |
if attention_mask is None: | |
attention_mask = torch.ones((batch_size, seq_length), device=scores.device, dtype=scores.dtype) | |
if attention_mask.dim() == 2: | |
position_bias = position_bias + attention_mask[:, None, None, :].to(position_bias.device) | |
else: | |
# (batch_size, n_heads, seq_length, key_length) | |
position_bias = position_bias + attention_mask.to(position_bias.device) | |
position_bias = 1 - position_bias | |
position_bias_masked = position_bias.masked_fill(position_bias == 1, torch.finfo(scores.dtype).min) | |
scores += position_bias_masked | |
scores = torch.max(scores, torch.tensor(torch.finfo(scores.dtype).min)) | |
# (batch_size, n_heads, seq_length, key_length) | |
attn_weights = nn.functional.softmax(scores, dim=-1, dtype=torch.float32).type_as(scores) | |
# (batch_size, n_heads, seq_length, key_length) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
# Mask heads if we want to | |
if layer_head_mask is not None: | |
attn_weights = attn_weights * layer_head_mask | |
attn_output = torch.matmul(attn_weights, value_states) | |
# (batch_size, seq_length, dim) | |
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) | |
attn_output = self.output(attn_output) | |
outputs = (attn_output,) + (position_bias,) | |
if output_attentions: | |
outputs = outputs + (attn_weights,) | |
return outputs | |
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5DenseGatedActDense->Pix2StructVisionMlp,T5Config->Pix2StructVisionConfig,config.d_model->config.hidden_size,dropout_rate->dropout_rate | |
class Pix2StructVisionMlp(nn.Module): | |
def __init__(self, config: Pix2StructVisionConfig): | |
super().__init__() | |
self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False) | |
self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False) | |
self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = ACT2FN[config.dense_act_fn] | |
def forward(self, hidden_states): | |
hidden_gelu = self.act(self.wi_0(hidden_states)) | |
hidden_linear = self.wi_1(hidden_states) | |
hidden_states = hidden_gelu * hidden_linear | |
hidden_states = self.dropout(hidden_states) | |
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. | |
# See https://github.com/huggingface/transformers/issues/20287 | |
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` | |
if ( | |
isinstance(self.wo.weight, torch.Tensor) | |
and hidden_states.dtype != self.wo.weight.dtype | |
and self.wo.weight.dtype != torch.int8 | |
): | |
hidden_states = hidden_states.to(self.wo.weight.dtype) | |
hidden_states = self.wo(hidden_states) | |
return hidden_states | |
class Pix2StructVisionLayer(nn.Module): | |
def __init__(self, config: Pix2StructConfig) -> None: | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = Pix2StructVisionAttention(config) | |
self.mlp = Pix2StructVisionMlp(config) | |
self.pre_mlp_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.pre_attention_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
residual = hidden_states | |
# in Pix2StructVision, layernorm is applied before self-attention | |
hidden_states = self.pre_attention_layer_norm(hidden_states) | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=head_mask, | |
output_attentions=output_attentions, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
# first residual connection | |
hidden_states = attention_output + residual | |
# in Pix2StructVision, layernorm is also applied after self-attention | |
layer_output = self.pre_mlp_layer_norm(hidden_states) | |
layer_output = self.mlp(layer_output) + hidden_states # second residual connection | |
outputs = (layer_output,) + outputs | |
return outputs | |
class Pix2StructVisionEncoder(nn.Module): | |
def __init__(self, config: Pix2StructConfig) -> None: | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([Pix2StructVisionLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
) -> Union[tuple, BaseModelOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class Pix2StructPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = Pix2StructConfig | |
def dummy_inputs(self): | |
input_ids = torch.tensor(DUMMY_INPUTS) | |
input_mask = torch.tensor(DUMMY_MASK) | |
dummy_inputs = { | |
"decoder_input_ids": input_ids, | |
"input_ids": input_ids, | |
"decoder_attention_mask": input_mask, | |
} | |
return dummy_inputs | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
factor = self.config.initializer_factor # Used for testing weights initialization | |
if isinstance(module, Pix2StructLayerNorm): | |
module.weight.data.fill_(factor * 1.0) | |
elif isinstance(module, Pix2StructTextDenseGatedActDense): | |
hidden_size = ( | |
self.config.text_config.hidden_size | |
if isinstance(self.config, Pix2StructConfig) | |
else self.config.hidden_size | |
) | |
d_ff = self.config.text_config.d_ff if isinstance(self.config, Pix2StructConfig) else self.config.d_ff | |
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) | |
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: | |
module.wi_0.bias.data.zero_() | |
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) | |
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: | |
module.wi_1.bias.data.zero_() | |
module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5)) | |
if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
module.wo.bias.data.zero_() | |
elif isinstance(module, Pix2StructTextAttention): | |
# Mesh TensorFlow attention initialization to avoid scaling before softmax | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 | |
hidden_size = ( | |
self.config.text_config.hidden_size | |
if isinstance(self.config, Pix2StructConfig) | |
else self.config.hidden_size | |
) | |
key_value_proj_dim = ( | |
self.config.text_config.d_kv if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size | |
) | |
n_heads = ( | |
self.config.text_config.num_heads | |
if isinstance(self.config, Pix2StructConfig) | |
else self.config.num_heads | |
) | |
module.query.weight.data.normal_(mean=0.0, std=factor * ((hidden_size * key_value_proj_dim) ** -0.5)) | |
module.key.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5)) | |
module.value.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5)) | |
module.output.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) | |
if module.has_relative_attention_bias: | |
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) | |
elif isinstance(module, nn.Embedding): | |
hidden_size = ( | |
self.config.text_config.hidden_size | |
if isinstance(self.config, Pix2StructConfig) | |
else self.config.hidden_size | |
) | |
module.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, Pix2StructTextModel): | |
hidden_size = ( | |
self.config.text_config.hidden_size | |
if isinstance(self.config, Pix2StructConfig) | |
else self.config.hidden_size | |
) | |
module.lm_head.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) | |
elif isinstance(module, (nn.Linear, nn.Conv2d)): | |
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid | |
# `trunc_normal_cpu` not implemented in `half` issues | |
module.weight.data = nn.init.trunc_normal_( | |
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range | |
).to(module.weight.dtype) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, Pix2StructLayerNorm): | |
if module.weight is not None: | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->Pix2Struct | |
def _shift_right(self, input_ids): | |
decoder_start_token_id = self.config.decoder_start_token_id | |
pad_token_id = self.config.pad_token_id | |
if decoder_start_token_id is None: | |
raise ValueError( | |
"self.model.config.decoder_start_token_id has to be defined. In Pix2Struct it is usually set to the pad_token_id. " | |
"See Pix2Struct docs for more information." | |
) | |
# shift inputs to the right | |
if is_torch_fx_proxy(input_ids): | |
# Item assignment is not supported natively for proxies. | |
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) | |
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) | |
else: | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
shifted_input_ids[..., 0] = decoder_start_token_id | |
if pad_token_id is None: | |
raise ValueError("self.model.config.pad_token_id has to be defined.") | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
return shifted_input_ids | |
PIX2STRUCT_VISION_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it | |
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`Pix2StructConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
PIX2STRUCT_VISION_INPUTS_DOCSTRING = r""" | |
Args: | |
flattened_patches (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_channels x patch_height x patch_width)`): | |
Flattened and padded pixel values. These values can be obtained using [`AutoImageProcessor`]. See | |
[`Pix2StructVisionImageProcessor.__call__`] for details. Check the [original | |
paper](https://arxiv.org/abs/2210.03347) (figure 5) for more details. | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class Pix2StructVisionModel(Pix2StructPreTrainedModel): | |
config_class = Pix2StructVisionConfig | |
main_input_name = "flattened_patches" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["Pix2StructVisionLayer"] | |
def __init__(self, config: Pix2StructConfig): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = Pix2StructVisionEmbeddings(config) | |
self.encoder = Pix2StructVisionEncoder(config) | |
self.layernorm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.patch_projection | |
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
flattened_patches: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> import requests | |
>>> from PIL import Image | |
>>> from transformers import AutoProcessor, Pix2StructVisionModel | |
>>> image_processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base") | |
>>> model = Pix2StructVisionModel.from_pretrained("google/pix2struct-textcaps-base") | |
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = image_processor(images=image, return_tensors="pt") | |
>>> with torch.no_grad(): | |
... outputs = model(**inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
>>> list(last_hidden_states.shape) | |
[1, 2048, 768] | |
``` | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if flattened_patches is None: | |
raise ValueError("You have to specify flattened_patches") | |
if attention_mask is None: | |
# check where `flattened_patches` is not 0 | |
attention_mask = (flattened_patches.sum(dim=-1) != 0).float() | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings(flattened_patches) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
if not return_dict: | |
head_outputs = (sequence_output,) | |
return head_outputs + encoder_outputs[1:] | |
return BaseModelOutput( | |
last_hidden_state=sequence_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->Pix2StructText,d_model->hidden_size | |
class Pix2StructTextDenseGatedActDense(nn.Module): | |
def __init__(self, config: Pix2StructTextConfig): | |
super().__init__() | |
self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False) | |
self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False) | |
self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = ACT2FN[config.dense_act_fn] | |
def forward(self, hidden_states): | |
hidden_gelu = self.act(self.wi_0(hidden_states)) | |
hidden_linear = self.wi_1(hidden_states) | |
hidden_states = hidden_gelu * hidden_linear | |
hidden_states = self.dropout(hidden_states) | |
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. | |
# See https://github.com/huggingface/transformers/issues/20287 | |
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` | |
if ( | |
isinstance(self.wo.weight, torch.Tensor) | |
and hidden_states.dtype != self.wo.weight.dtype | |
and self.wo.weight.dtype != torch.int8 | |
): | |
hidden_states = hidden_states.to(self.wo.weight.dtype) | |
hidden_states = self.wo(hidden_states) | |
return hidden_states | |
class Pix2StructTextLayerFF(nn.Module): | |
def __init__(self, config: Pix2StructTextConfig): | |
super().__init__() | |
self.DenseReluDense = Pix2StructTextDenseGatedActDense(config) | |
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
# Copied from transformers.models.t5.modeling_t5.T5LayerFF.forward | |
def forward(self, hidden_states): | |
forwarded_states = self.layer_norm(hidden_states) | |
forwarded_states = self.DenseReluDense(forwarded_states) | |
hidden_states = hidden_states + self.dropout(forwarded_states) | |
return hidden_states | |
class Pix2StructTextAttention(nn.Module): | |
def __init__(self, config: Pix2StructTextConfig, has_relative_attention_bias=False): | |
super().__init__() | |
self.has_relative_attention_bias = has_relative_attention_bias | |
self.relative_attention_num_buckets = config.relative_attention_num_buckets | |
self.relative_attention_max_distance = config.relative_attention_max_distance | |
self.hidden_size = config.hidden_size | |
self.key_value_proj_dim = config.d_kv | |
self.n_heads = config.num_heads | |
self.dropout = config.dropout_rate | |
self.inner_dim = self.n_heads * self.key_value_proj_dim | |
# Mesh TensorFlow initialization to avoid scaling before softmax | |
self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
self.key = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
self.value = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
self.output = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
if self.has_relative_attention_bias: | |
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) | |
self.pruned_heads = set() | |
self.gradient_checkpointing = False | |
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket | |
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | |
""" | |
Adapted from Mesh Tensorflow: | |
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | |
Translate relative position to a bucket number for relative attention. The relative position is defined as | |
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | |
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | |
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | |
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | |
This should allow for more graceful generalization to longer sequences than the model has been trained on | |
Args: | |
relative_position: an int32 Tensor | |
bidirectional: a boolean - whether the attention is bidirectional | |
num_buckets: an integer | |
max_distance: an integer | |
Returns: | |
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | |
""" | |
relative_buckets = 0 | |
if bidirectional: | |
num_buckets //= 2 | |
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | |
relative_position = torch.abs(relative_position) | |
else: | |
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) | |
# now relative_position is in the range [0, inf) | |
# half of the buckets are for exact increments in positions | |
max_exact = num_buckets // 2 | |
is_small = relative_position < max_exact | |
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
relative_position_if_large = max_exact + ( | |
torch.log(relative_position.float() / max_exact) | |
/ math.log(max_distance / max_exact) | |
* (num_buckets - max_exact) | |
).to(torch.long) | |
relative_position_if_large = torch.min( | |
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | |
) | |
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) | |
return relative_buckets | |
# Adapted from transformers.models.t5.modeling_t5.T5Attention.compute_bias | |
def compute_bias(self, query_length, key_length, device=None): | |
"""Compute binned relative position bias""" | |
if device is None: | |
device = self.relative_attention_bias.weight.device | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position # shape (query_length, key_length) | |
relative_position_bucket = self._relative_position_bucket( | |
relative_position, # shape (query_length, key_length) | |
bidirectional=False, | |
num_buckets=self.relative_attention_num_buckets, | |
max_distance=self.relative_attention_max_distance, | |
) | |
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) | |
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) | |
return values | |
def forward( | |
self, | |
hidden_states, | |
mask=None, | |
key_value_states=None, | |
position_bias=None, | |
past_key_value=None, | |
layer_head_mask=None, | |
query_length=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
""" | |
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). | |
""" | |
# Input is (batch_size, seq_length, dim) | |
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) | |
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) | |
batch_size, seq_length = hidden_states.shape[:2] | |
real_seq_length = seq_length | |
if past_key_value is not None: | |
if len(past_key_value) != 2: | |
raise ValueError( | |
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" | |
) | |
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length | |
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] | |
def to_projection_shape(states): | |
"""projection""" | |
return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) | |
def project(hidden_states, proj_layer, key_value_states, past_key_value): | |
"""projects hidden states correctly to key/query states""" | |
if key_value_states is None: | |
# self-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = to_projection_shape(proj_layer(hidden_states)) | |
elif past_key_value is None: | |
# cross-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = to_projection_shape(proj_layer(key_value_states)) | |
if past_key_value is not None: | |
if key_value_states is None: | |
# self-attn | |
# (batch_size, n_heads, key_length, dim_per_head) | |
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) | |
elif past_key_value.shape[2] != key_value_states.shape[1]: | |
# checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
# cross-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = to_projection_shape(proj_layer(key_value_states)) | |
else: | |
# cross-attn | |
hidden_states = past_key_value | |
return hidden_states | |
# get query states | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
query_states = to_projection_shape(self.query(hidden_states)) | |
# get key/value states | |
key_states = project( | |
hidden_states, self.key, key_value_states, past_key_value[0] if past_key_value is not None else None | |
) | |
value_states = project( | |
hidden_states, self.value, key_value_states, past_key_value[1] if past_key_value is not None else None | |
) | |
# compute scores | |
scores = torch.matmul( | |
query_states, key_states.transpose(3, 2) | |
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 | |
if position_bias is None: | |
if not self.has_relative_attention_bias: | |
position_bias = torch.zeros( | |
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype | |
) | |
if self.gradient_checkpointing and self.training: | |
position_bias.requires_grad = True | |
else: | |
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) | |
# if key and values are already calculated | |
# we want only the last query position bias | |
if past_key_value is not None: | |
position_bias = position_bias[:, :, -hidden_states.size(1) :, :] | |
if mask is not None: | |
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) | |
if self.pruned_heads: | |
mask = torch.ones(position_bias.shape[1]) | |
mask[list(self.pruned_heads)] = 0 | |
position_bias_masked = position_bias[:, mask.bool()] | |
else: | |
position_bias_masked = position_bias | |
scores += position_bias_masked | |
# (batch_size, n_heads, seq_length, key_length) | |
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) | |
# (batch_size, n_heads, seq_length, key_length) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
# Mask heads if we want to | |
if layer_head_mask is not None: | |
attn_weights = attn_weights * layer_head_mask | |
attn_output = torch.matmul(attn_weights, value_states) | |
# (batch_size, seq_length, dim) | |
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) | |
attn_output = self.output(attn_output) | |
present_key_value_state = (key_states, value_states) if use_cache else None | |
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) | |
if output_attentions: | |
outputs = outputs + (attn_weights,) | |
return outputs | |
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.SelfAttention->self.attention,config.d_model->config.hidden_size | |
class Pix2StructTextLayerSelfAttention(nn.Module): | |
def __init__(self, config, has_relative_attention_bias=False): | |
super().__init__() | |
self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=has_relative_attention_bias) | |
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.attention( | |
normed_hidden_states, | |
mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states = hidden_states + self.dropout(attention_output[0]) | |
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.EncDecAttention->self.attention,config.d_model->config.hidden_size | |
class Pix2StructTextLayerCrossAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=False) | |
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
key_value_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
query_length=None, | |
output_attentions=False, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.attention( | |
normed_hidden_states, | |
mask=attention_mask, | |
key_value_states=key_value_states, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
query_length=query_length, | |
output_attentions=output_attentions, | |
) | |
layer_output = hidden_states + self.dropout(attention_output[0]) | |
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
class Pix2StructTextBlock(nn.Module): | |
def __init__(self, config, has_relative_attention_bias=False): | |
super().__init__() | |
self.self_attention = Pix2StructTextLayerSelfAttention( | |
config, has_relative_attention_bias=has_relative_attention_bias | |
) | |
self.encoder_decoder_attention = Pix2StructTextLayerCrossAttention(config) | |
self.mlp = Pix2StructTextLayerFF(config) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
encoder_decoder_position_bias=None, | |
layer_head_mask=None, | |
cross_attn_layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
return_dict=True, | |
): | |
if past_key_value is not None: | |
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 | |
if len(past_key_value) != expected_num_past_key_values: | |
raise ValueError( | |
f"There should be {expected_num_past_key_values} past states. " | |
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" | |
f"Got {len(past_key_value)} past key / value states" | |
) | |
self_attn_past_key_value = past_key_value[:2] | |
cross_attn_past_key_value = past_key_value[2:] | |
else: | |
self_attn_past_key_value, cross_attn_past_key_value = None, None | |
self_attention_outputs = self.self_attention( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=self_attn_past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states, present_key_value_state = self_attention_outputs[:2] | |
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
do_cross_attention = encoder_hidden_states is not None | |
if do_cross_attention: | |
# the actual query length is unknown for cross attention | |
# if using past key value states. Need to inject it here | |
if present_key_value_state is not None: | |
query_length = present_key_value_state[0].shape[2] | |
else: | |
query_length = None | |
cross_attention_outputs = self.encoder_decoder_attention( | |
hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
position_bias=encoder_decoder_position_bias, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
query_length=query_length, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states = cross_attention_outputs[0] | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
# Combine self attn and cross attn key value states | |
if present_key_value_state is not None: | |
present_key_value_state = present_key_value_state + cross_attention_outputs[1] | |
# Keep cross-attention outputs and relative position weights | |
attention_outputs = attention_outputs + cross_attention_outputs[2:] | |
# Apply Feed Forward layer | |
hidden_states = self.mlp(hidden_states) | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
outputs = (hidden_states,) | |
if use_cache: | |
outputs = outputs + (present_key_value_state,) + attention_outputs | |
else: | |
outputs = outputs + attention_outputs | |
return outputs | |
PIX2STRUCT_START_DOCSTRING = r""" | |
The Pix2Struct model was proposed in [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language | |
Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, | |
Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. It's an encoder decoder | |
transformer pre-trained in a image-to-text setting. | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config (Union[`Pix2StructConfig`, `Pix2StructTextConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
PIX2STRUCT_TEXT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Pix2StructText is a model with relative position | |
embeddings so you should be able to pad the inputs on both the right and the left. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for detail. | |
[What are input IDs?](../glossary#input-ids) | |
To know more on how to prepare `input_ids` for pretraining take a look a [Pix2StructText | |
Training](./t5#training). | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) | |
Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If | |
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText | |
Training](./t5#training). | |
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in | |
`[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at | |
the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
input (see `past_key_values`). This is useful if you want more control over how to convert | |
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value | |
of `inputs_embeds`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
PIX2STRUCT_INPUTS_DOCSTRING = r""" | |
Args: | |
flattened_patches (`torch.FloatTensor` of shape `(batch_size, seq_length, hidden_size)`): | |
Flattened pixel patches. the `hidden_size` is obtained by the following formula: `hidden_size` = | |
`num_channels` * `patch_size` * `patch_size` | |
The process of flattening the pixel patches is done by `Pix2StructProcessor`. | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) | |
Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If | |
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText | |
Training](./t5#training). | |
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in | |
`[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at | |
the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
input (see `past_key_values`). This is useful if you want more control over how to convert | |
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value | |
of `inputs_embeds`. | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss for the decoder. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class Pix2StructTextModel(Pix2StructPreTrainedModel): | |
config_class = Pix2StructTextConfig | |
_no_split_modules = ["Pix2StructTextBlock"] | |
_tied_weights_keys = ["lm_head.weight"] | |
supports_gradient_checkpointing = True | |
def __init__(self, config): | |
super().__init__(config) | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) | |
self.layer = nn.ModuleList( | |
[Pix2StructTextBlock(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] | |
) | |
self.final_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
self.gradient_checkpointing = False | |
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._reorder_cache | |
def _reorder_cache(self, past_key_values, beam_idx): | |
# if decoder past is not included in output | |
# speedy decoding is disabled and no need to reorder | |
if past_key_values is None: | |
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") | |
return past_key_values | |
reordered_decoder_past = () | |
for layer_past_states in past_key_values: | |
# get the correct batch idx from layer past batch dim | |
# batch dim of `past` is at 2nd position | |
reordered_layer_past_states = () | |
for layer_past_state in layer_past_states: | |
# need to set correct `past` for each of the four key / value states | |
reordered_layer_past_states = reordered_layer_past_states + ( | |
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), | |
) | |
if reordered_layer_past_states[0].shape != layer_past_states[0].shape: | |
raise ValueError( | |
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" | |
) | |
if len(reordered_layer_past_states) != len(layer_past_states): | |
raise ValueError( | |
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" | |
) | |
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) | |
return reordered_decoder_past | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, new_embeddings): | |
self.embed_tokens = new_embeddings | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
labels: Optional[torch.LongTensor] = None, | |
return_dict: Optional[bool] = None, | |
**kwargs, | |
) -> Union[Tuple[torch.FloatTensor, ...], CausalLMOutputWithCrossAttentions]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoProcessor, Pix2StructTextModel | |
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base") | |
>>> model = Pix2StructTextModel.from_pretrained("google/pix2struct-textcaps-base") | |
>>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> loss = outputs.loss | |
``` | |
""" | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
if inputs_embeds is None: | |
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" | |
inputs_embeds = self.embed_tokens(input_ids) | |
batch_size, seq_length = input_shape | |
# required mask seq length can be calculated via length of past | |
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length | |
if attention_mask is None: | |
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) | |
if encoder_attention_mask is None and encoder_hidden_states is not None: | |
encoder_seq_length = encoder_hidden_states.shape[1] | |
encoder_attention_mask = torch.ones( | |
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long | |
) | |
# initialize past_key_values with `None` if past does not exist | |
if past_key_values is None: | |
past_key_values = [None] * len(self.layer) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
# Prepare head mask if needed | |
head_mask = self.get_head_mask(head_mask, self.config.num_layers) | |
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) | |
present_key_value_states = () if use_cache else None | |
all_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions) else None | |
position_bias = None | |
encoder_decoder_position_bias = None | |
hidden_states = self.dropout(inputs_embeds) | |
for i, (layer_module, past_key_value) in enumerate(zip(self.layer, past_key_values)): | |
layer_head_mask = head_mask[i] | |
cross_attn_layer_head_mask = cross_attn_head_mask[i] | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.forward, | |
hidden_states, | |
extended_attention_mask, | |
position_bias, | |
encoder_hidden_states, | |
encoder_extended_attention_mask, | |
encoder_decoder_position_bias, | |
layer_head_mask, | |
cross_attn_layer_head_mask, | |
None, # past_key_value is always None with gradient checkpointing | |
use_cache, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask=extended_attention_mask, | |
position_bias=position_bias, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
encoder_decoder_position_bias=encoder_decoder_position_bias, | |
layer_head_mask=layer_head_mask, | |
cross_attn_layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
# layer_outputs is a tuple with: | |
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
if use_cache is False: | |
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] | |
hidden_states, present_key_value_state = layer_outputs[:2] | |
# We share the position biases between the layers - the first layer store them | |
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), | |
# (cross-attention position bias), (cross-attention weights) | |
position_bias = layer_outputs[2] | |
if encoder_hidden_states is not None: | |
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] | |
# append next layer key value states | |
if use_cache: | |
present_key_value_states = present_key_value_states + (present_key_value_state,) | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[3],) | |
if encoder_hidden_states is not None: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[5],) | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
logits = self.lm_head(hidden_states) | |
# Add last layer | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
loss_fct = nn.CrossEntropyLoss(ignore_index=-100, reduction="mean") | |
loss = loss_fct(logits.contiguous().view(-1, logits.size(-1)), labels.contiguous().view(-1)) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
loss, | |
logits, | |
present_key_value_states, | |
all_hidden_states, | |
all_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return CausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=logits, | |
past_key_values=present_key_value_states, | |
hidden_states=all_hidden_states, | |
attentions=all_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
class Pix2StructForConditionalGeneration(Pix2StructPreTrainedModel): | |
config_class = Pix2StructConfig | |
main_input_name = "flattened_patches" | |
_tied_weights_keys = ["decoder.lm_head.weight"] | |
def __init__(self, config: Pix2StructConfig): | |
super().__init__(config) | |
self.encoder = Pix2StructVisionModel(config.vision_config) | |
self.decoder = Pix2StructTextModel(config.text_config) | |
self.is_vqa = config.is_vqa | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.decoder.get_input_embeddings() | |
def set_input_embeddings(self, new_embeddings): | |
self.decoder.set_input_embeddings(new_embeddings) | |
def get_output_embeddings(self) -> nn.Module: | |
return self.decoder.get_output_embeddings() | |
def set_output_embeddings(self, new_embeddings): | |
self.decoder.set_output_embeddings(new_embeddings) | |
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: | |
model_embeds = self.decoder.resize_token_embeddings(new_num_tokens) | |
# update vocab size | |
self.config.text_config.vocab_size = new_num_tokens | |
return model_embeds | |
def get_decoder(self): | |
return self.decoder | |
def get_encoder(self): | |
return self.encoder | |
def forward( | |
self, | |
flattened_patches: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
decoder_head_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
labels: Optional[torch.LongTensor] = None, | |
decoder_inputs_embeds: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: | |
r""" | |
Returns: | |
Example: | |
Inference: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration | |
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base") | |
>>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base") | |
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor(images=image, return_tensors="pt") | |
>>> # autoregressive generation | |
>>> generated_ids = model.generate(**inputs, max_new_tokens=50) | |
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
>>> print(generated_text) | |
A stop sign is on a street corner. | |
>>> # conditional generation | |
>>> text = "A picture of" | |
>>> inputs = processor(text=text, images=image, return_tensors="pt", add_special_tokens=False) | |
>>> generated_ids = model.generate(**inputs, max_new_tokens=50) | |
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
>>> print(generated_text) | |
A picture of a stop sign with a red stop sign | |
``` | |
Training: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration | |
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-base") | |
>>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-base") | |
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> text = "A stop sign is on the street corner." | |
>>> inputs = processor(images=image, return_tensors="pt") | |
>>> labels = processor(text=text, return_tensors="pt").input_ids | |
>>> # forward pass | |
>>> outputs = model(**inputs, labels=labels) | |
>>> loss = outputs.loss | |
>>> print(f"{loss.item():.5f}") | |
5.94282 | |
```""" | |
use_cache = use_cache if use_cache is not None else self.config.text_config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# Encode if needed (training, first prediction pass) | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
flattened_patches=flattened_patches, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
hidden_states = encoder_outputs[0] | |
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: | |
# get decoder inputs from shifting lm labels to the right | |
decoder_input_ids = self._shift_right(labels) | |
decoder_attention_mask = ( | |
decoder_attention_mask | |
if decoder_attention_mask is not None | |
else decoder_input_ids.ne(self.config.pad_token_id).float() | |
) | |
# Always attend to the first token | |
decoder_attention_mask[:, 0] = 1 | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
past_key_values=past_key_values, | |
encoder_hidden_states=hidden_states, | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
labels=labels, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return decoder_outputs + encoder_outputs | |
return Seq2SeqLMOutput( | |
loss=decoder_outputs.loss, | |
logits=decoder_outputs.logits, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
flattened_patches: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
past_key_values=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
use_cache=None, | |
encoder_outputs=None, | |
**kwargs, | |
): | |
if decoder_attention_mask is None: | |
decoder_attention_mask = torch.ones_like(input_ids).to(input_ids.device) | |
# cut decoder_input_ids if past_key_values is used | |
if past_key_values is not None: | |
past_length = past_key_values[0][0].shape[2] | |
# Some generation methods already pass only the last input ID | |
if input_ids.shape[1] > past_length: | |
remove_prefix_length = past_length | |
else: | |
# Default to old behavior: keep only final ID | |
remove_prefix_length = input_ids.shape[1] - 1 | |
input_ids = input_ids[:, remove_prefix_length:] | |
return { | |
"flattened_patches": flattened_patches, | |
"decoder_input_ids": input_ids, | |
"past_key_values": past_key_values, | |
"encoder_outputs": encoder_outputs, | |
"attention_mask": attention_mask, | |
"decoder_attention_mask": decoder_attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
"use_cache": use_cache, | |
} | |