Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/plbart
/configuration_plbart.py
# coding=utf-8 | |
# Copyright 2022, UCLA NLP, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PLBART model configuration""" | |
from collections import OrderedDict | |
from typing import Mapping | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfigWithPast | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class PLBartConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`PLBartModel`]. It is used to instantiate an | |
PLBART model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the PLBART | |
[uclanlp/plbart-base](https://huggingface.co/uclanlp/plbart-base) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 50005): | |
Vocabulary size of the PLBART model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`PLBartModel`]. | |
d_model (`int`, *optional*, defaults to 768): | |
Dimensionality of the layers and the pooler layer. | |
encoder_layers (`int`, *optional*, defaults to 6): | |
Number of encoder layers. | |
decoder_layers (`int`, *optional*, defaults to 6): | |
Number of decoder layers. | |
encoder_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
decoder_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
decoder_ffn_dim (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
encoder_ffn_dim (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
activation_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for activations inside the fully connected layer. | |
classifier_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for classifier. | |
max_position_embeddings (`int`, *optional*, defaults to 1024): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
init_std (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
encoder_layerdrop (`float`, *optional*, defaults to 0.0): | |
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) | |
for more details. | |
decoder_layerdrop (`float`, *optional*, defaults to 0.0): | |
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) | |
for more details. | |
scale_embedding (`bool`, *optional*, defaults to `True`): | |
Scale embeddings by diving by sqrt(d_model). | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models) | |
forced_eos_token_id (`int`, *optional*, defaults to 2): | |
The id of the token to force as the last generated token when `max_length` is reached. Usually set to | |
`eos_token_id`. | |
Example: | |
```python | |
>>> from transformers import PLBartConfig, PLBartModel | |
>>> # Initializing a PLBART uclanlp/plbart-base style configuration | |
>>> configuration = PLBartConfig() | |
>>> # Initializing a model (with random weights) from the uclanlp/plbart-base style configuration | |
>>> model = PLBartModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "plbart" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} | |
def __init__( | |
self, | |
vocab_size=50005, | |
max_position_embeddings=1024, | |
encoder_layers=6, | |
encoder_ffn_dim=3072, | |
encoder_attention_heads=12, | |
decoder_layers=6, | |
decoder_ffn_dim=3072, | |
decoder_attention_heads=12, | |
encoder_layerdrop=0.0, | |
decoder_layerdrop=0.0, | |
use_cache=True, | |
is_encoder_decoder=True, | |
activation_function="gelu", | |
d_model=768, | |
dropout=0.1, | |
attention_dropout=0.1, | |
activation_dropout=0.0, | |
init_std=0.02, | |
classifier_dropout=0.0, | |
scale_embedding=True, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
forced_eos_token_id=2, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.d_model = d_model | |
self.encoder_ffn_dim = encoder_ffn_dim | |
self.encoder_layers = encoder_layers | |
self.encoder_attention_heads = encoder_attention_heads | |
self.decoder_ffn_dim = decoder_ffn_dim | |
self.decoder_layers = decoder_layers | |
self.decoder_attention_heads = decoder_attention_heads | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.activation_function = activation_function | |
self.init_std = init_std | |
self.encoder_layerdrop = encoder_layerdrop | |
self.decoder_layerdrop = decoder_layerdrop | |
self.classifier_dropout = classifier_dropout | |
self.use_cache = use_cache | |
self.num_hidden_layers = encoder_layers | |
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
is_encoder_decoder=is_encoder_decoder, | |
forced_eos_token_id=forced_eos_token_id, | |
**kwargs, | |
) | |
class PLBartOnnxConfig(OnnxConfigWithPast): | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
return OrderedDict( | |
[ | |
("input_ids", {0: "batch", 1: "sequence"}), | |
("attention_mask", {0: "batch", 1: "sequence"}), | |
] | |
) | |
def outputs(self) -> Mapping[str, Mapping[int, str]]: | |
if self.use_past: | |
return OrderedDict( | |
[ | |
("last_hidden_state", {0: "batch", 1: "sequence"}), | |
("past_keys", {0: "batch", 2: "sequence"}), | |
("encoder_last_hidden_state", {0: "batch", 1: "sequence"}), | |
] | |
) | |
else: | |
return OrderedDict( | |
[ | |
("last_hidden_state", {0: "batch", 1: "sequence"}), | |
("encoder_last_hidden_state", {0: "batch", 1: "sequence"}), | |
] | |
) | |