Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/pop2piano
/modeling_pop2piano.py
# coding=utf-8 | |
# Copyright 2023 The Pop2Piano Authors and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch Pop2Piano model.""" | |
import copy | |
import math | |
from typing import Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from transformers.generation import GenerationConfig | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPastAndCrossAttentions, | |
Seq2SeqLMOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_torch_fx_proxy, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_pop2piano import Pop2PianoConfig | |
logger = logging.get_logger(__name__) | |
_load_pop2piano_layer_norm = True | |
try: | |
from apex.normalization import FusedRMSNorm | |
_load_pop2piano_layer_norm = False | |
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of Pop2PianoLayerNorm") | |
except ImportError: | |
# using the normal Pop2PianoLayerNorm | |
pass | |
except Exception: | |
logger.warning("Discovered apex but it failed to load, falling back to Pop2PianoLayerNorm") | |
pass | |
_CONFIG_FOR_DOC = "Pop2PianoConfig" | |
_CHECKPOINT_FOR_DOC = "sweetcocoa/pop2piano" | |
POP2PIANO_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Pop2Piano is a model with relative position embeddings | |
so you should be able to pad the inputs on both the right and the left. Indices can be obtained using | |
[`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. | |
[What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining | |
take a look a [Pop2Piano Training](./Pop2Piano#training). | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using | |
[`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) Pop2Piano uses the `pad_token_id` as the | |
starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last | |
`decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare | |
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in | |
`[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at | |
the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Does the same task as `inputs_embeds`. If `inputs_embeds` is not present but `input_features` is present | |
then `input_features` will be considered as `inputs_embeds`. | |
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
input (see `past_key_values`). This is useful if you want more control over how to convert | |
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If | |
`decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of | |
`inputs_embeds`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->Pop2Piano | |
class Pop2PianoLayerNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
Construct a layernorm module in the Pop2Piano style. No bias and no subtraction of mean. | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
# Pop2Piano uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean | |
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated | |
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for | |
# half-precision inputs is done in fp32 | |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
# convert into half-precision if necessary | |
if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
hidden_states = hidden_states.to(self.weight.dtype) | |
return self.weight * hidden_states | |
if not _load_pop2piano_layer_norm: | |
Pop2PianoLayerNorm = FusedRMSNorm # noqa | |
ALL_LAYERNORM_LAYERS.append(Pop2PianoLayerNorm) | |
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->Pop2Piano,t5->pop2piano | |
class Pop2PianoDenseActDense(nn.Module): | |
def __init__(self, config: Pop2PianoConfig): | |
super().__init__() | |
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = ACT2FN[config.dense_act_fn] | |
def forward(self, hidden_states): | |
hidden_states = self.wi(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
if ( | |
isinstance(self.wo.weight, torch.Tensor) | |
and hidden_states.dtype != self.wo.weight.dtype | |
and self.wo.weight.dtype != torch.int8 | |
): | |
hidden_states = hidden_states.to(self.wo.weight.dtype) | |
hidden_states = self.wo(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->Pop2Piano | |
class Pop2PianoDenseGatedActDense(nn.Module): | |
def __init__(self, config: Pop2PianoConfig): | |
super().__init__() | |
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = ACT2FN[config.dense_act_fn] | |
def forward(self, hidden_states): | |
hidden_gelu = self.act(self.wi_0(hidden_states)) | |
hidden_linear = self.wi_1(hidden_states) | |
hidden_states = hidden_gelu * hidden_linear | |
hidden_states = self.dropout(hidden_states) | |
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. | |
# See https://github.com/huggingface/transformers/issues/20287 | |
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` | |
if ( | |
isinstance(self.wo.weight, torch.Tensor) | |
and hidden_states.dtype != self.wo.weight.dtype | |
and self.wo.weight.dtype != torch.int8 | |
): | |
hidden_states = hidden_states.to(self.wo.weight.dtype) | |
hidden_states = self.wo(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->Pop2Piano | |
class Pop2PianoLayerFF(nn.Module): | |
def __init__(self, config: Pop2PianoConfig): | |
super().__init__() | |
if config.is_gated_act: | |
self.DenseReluDense = Pop2PianoDenseGatedActDense(config) | |
else: | |
self.DenseReluDense = Pop2PianoDenseActDense(config) | |
self.layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward(self, hidden_states): | |
forwarded_states = self.layer_norm(hidden_states) | |
forwarded_states = self.DenseReluDense(forwarded_states) | |
hidden_states = hidden_states + self.dropout(forwarded_states) | |
return hidden_states | |
# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->Pop2Piano,t5->pop2piano | |
class Pop2PianoAttention(nn.Module): | |
def __init__(self, config: Pop2PianoConfig, has_relative_attention_bias=False): | |
super().__init__() | |
self.is_decoder = config.is_decoder | |
self.has_relative_attention_bias = has_relative_attention_bias | |
self.relative_attention_num_buckets = config.relative_attention_num_buckets | |
self.relative_attention_max_distance = config.relative_attention_max_distance | |
self.d_model = config.d_model | |
self.key_value_proj_dim = config.d_kv | |
self.n_heads = config.num_heads | |
self.dropout = config.dropout_rate | |
self.inner_dim = self.n_heads * self.key_value_proj_dim | |
# Mesh TensorFlow initialization to avoid scaling before softmax | |
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) | |
if self.has_relative_attention_bias: | |
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) | |
self.pruned_heads = set() | |
self.gradient_checkpointing = False | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads | |
) | |
# Prune linear layers | |
self.q = prune_linear_layer(self.q, index) | |
self.k = prune_linear_layer(self.k, index) | |
self.v = prune_linear_layer(self.v, index) | |
self.o = prune_linear_layer(self.o, index, dim=1) | |
# Update hyper params | |
self.n_heads = self.n_heads - len(heads) | |
self.inner_dim = self.key_value_proj_dim * self.n_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | |
""" | |
Adapted from Mesh Tensorflow: | |
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | |
Translate relative position to a bucket number for relative attention. The relative position is defined as | |
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | |
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | |
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | |
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | |
This should allow for more graceful generalization to longer sequences than the model has been trained on | |
Args: | |
relative_position: an int32 Tensor | |
bidirectional: a boolean - whether the attention is bidirectional | |
num_buckets: an integer | |
max_distance: an integer | |
Returns: | |
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | |
""" | |
relative_buckets = 0 | |
if bidirectional: | |
num_buckets //= 2 | |
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | |
relative_position = torch.abs(relative_position) | |
else: | |
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) | |
# now relative_position is in the range [0, inf) | |
# half of the buckets are for exact increments in positions | |
max_exact = num_buckets // 2 | |
is_small = relative_position < max_exact | |
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
relative_position_if_large = max_exact + ( | |
torch.log(relative_position.float() / max_exact) | |
/ math.log(max_distance / max_exact) | |
* (num_buckets - max_exact) | |
).to(torch.long) | |
relative_position_if_large = torch.min( | |
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | |
) | |
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) | |
return relative_buckets | |
def compute_bias(self, query_length, key_length, device=None): | |
"""Compute binned relative position bias""" | |
if device is None: | |
device = self.relative_attention_bias.weight.device | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position # shape (query_length, key_length) | |
relative_position_bucket = self._relative_position_bucket( | |
relative_position, # shape (query_length, key_length) | |
bidirectional=(not self.is_decoder), | |
num_buckets=self.relative_attention_num_buckets, | |
max_distance=self.relative_attention_max_distance, | |
) | |
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) | |
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) | |
return values | |
def forward( | |
self, | |
hidden_states, | |
mask=None, | |
key_value_states=None, | |
position_bias=None, | |
past_key_value=None, | |
layer_head_mask=None, | |
query_length=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
""" | |
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). | |
""" | |
# Input is (batch_size, seq_length, dim) | |
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) | |
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) | |
batch_size, seq_length = hidden_states.shape[:2] | |
real_seq_length = seq_length | |
if past_key_value is not None: | |
if len(past_key_value) != 2: | |
raise ValueError( | |
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" | |
) | |
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length | |
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] | |
def shape(states): | |
"""projection""" | |
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) | |
def unshape(states): | |
"""reshape""" | |
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) | |
def project(hidden_states, proj_layer, key_value_states, past_key_value): | |
"""projects hidden states correctly to key/query states""" | |
if key_value_states is None: | |
# self-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = shape(proj_layer(hidden_states)) | |
elif past_key_value is None: | |
# cross-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = shape(proj_layer(key_value_states)) | |
if past_key_value is not None: | |
if key_value_states is None: | |
# self-attn | |
# (batch_size, n_heads, key_length, dim_per_head) | |
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) | |
elif past_key_value.shape[2] != key_value_states.shape[1]: | |
# checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
# cross-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = shape(proj_layer(key_value_states)) | |
else: | |
# cross-attn | |
hidden_states = past_key_value | |
return hidden_states | |
# get query states | |
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) | |
# get key/value states | |
key_states = project( | |
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None | |
) | |
value_states = project( | |
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None | |
) | |
# compute scores | |
scores = torch.matmul( | |
query_states, key_states.transpose(3, 2) | |
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 | |
if position_bias is None: | |
if not self.has_relative_attention_bias: | |
position_bias = torch.zeros( | |
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype | |
) | |
if self.gradient_checkpointing and self.training: | |
position_bias.requires_grad = True | |
else: | |
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) | |
# if key and values are already calculated | |
# we want only the last query position bias | |
if past_key_value is not None: | |
position_bias = position_bias[:, :, -hidden_states.size(1) :, :] | |
if mask is not None: | |
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) | |
if self.pruned_heads: | |
mask = torch.ones(position_bias.shape[1]) | |
mask[list(self.pruned_heads)] = 0 | |
position_bias_masked = position_bias[:, mask.bool()] | |
else: | |
position_bias_masked = position_bias | |
scores += position_bias_masked | |
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( | |
scores | |
) # (batch_size, n_heads, seq_length, key_length) | |
attn_weights = nn.functional.dropout( | |
attn_weights, p=self.dropout, training=self.training | |
) # (batch_size, n_heads, seq_length, key_length) | |
# Mask heads if we want to | |
if layer_head_mask is not None: | |
attn_weights = attn_weights * layer_head_mask | |
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) | |
attn_output = self.o(attn_output) | |
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None | |
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) | |
if output_attentions: | |
outputs = outputs + (attn_weights,) | |
return outputs | |
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->Pop2Piano,t5->pop2piano | |
class Pop2PianoLayerSelfAttention(nn.Module): | |
def __init__(self, config, has_relative_attention_bias=False): | |
super().__init__() | |
self.SelfAttention = Pop2PianoAttention(config, has_relative_attention_bias=has_relative_attention_bias) | |
self.layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.SelfAttention( | |
normed_hidden_states, | |
mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states = hidden_states + self.dropout(attention_output[0]) | |
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->Pop2Piano,t5->pop2piano | |
class Pop2PianoLayerCrossAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.EncDecAttention = Pop2PianoAttention(config, has_relative_attention_bias=False) | |
self.layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
key_value_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
query_length=None, | |
output_attentions=False, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.EncDecAttention( | |
normed_hidden_states, | |
mask=attention_mask, | |
key_value_states=key_value_states, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
query_length=query_length, | |
output_attentions=output_attentions, | |
) | |
layer_output = hidden_states + self.dropout(attention_output[0]) | |
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.t5.modeling_t5.T5Block with T5->Pop2Piano,t5->pop2piano | |
class Pop2PianoBlock(nn.Module): | |
def __init__(self, config, has_relative_attention_bias=False): | |
super().__init__() | |
self.is_decoder = config.is_decoder | |
self.layer = nn.ModuleList() | |
self.layer.append(Pop2PianoLayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) | |
if self.is_decoder: | |
self.layer.append(Pop2PianoLayerCrossAttention(config)) | |
self.layer.append(Pop2PianoLayerFF(config)) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
encoder_decoder_position_bias=None, | |
layer_head_mask=None, | |
cross_attn_layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
return_dict=True, | |
): | |
if past_key_value is not None: | |
if not self.is_decoder: | |
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") | |
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 | |
if len(past_key_value) != expected_num_past_key_values: | |
raise ValueError( | |
f"There should be {expected_num_past_key_values} past states. " | |
f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}" | |
f"Got {len(past_key_value)} past key / value states" | |
) | |
self_attn_past_key_value = past_key_value[:2] | |
cross_attn_past_key_value = past_key_value[2:] | |
else: | |
self_attn_past_key_value, cross_attn_past_key_value = None, None | |
self_attention_outputs = self.layer[0]( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=self_attn_past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states, present_key_value_state = self_attention_outputs[:2] | |
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
do_cross_attention = self.is_decoder and encoder_hidden_states is not None | |
if do_cross_attention: | |
# the actual query length is unknown for cross attention | |
# if using past key value states. Need to inject it here | |
if present_key_value_state is not None: | |
query_length = present_key_value_state[0].shape[2] | |
else: | |
query_length = None | |
cross_attention_outputs = self.layer[1]( | |
hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
position_bias=encoder_decoder_position_bias, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
query_length=query_length, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states = cross_attention_outputs[0] | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
# Combine self attn and cross attn key value states | |
if present_key_value_state is not None: | |
present_key_value_state = present_key_value_state + cross_attention_outputs[1] | |
# Keep cross-attention outputs and relative position weights | |
attention_outputs = attention_outputs + cross_attention_outputs[2:] | |
# Apply Feed Forward layer | |
hidden_states = self.layer[-1](hidden_states) | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
outputs = (hidden_states,) | |
if use_cache: | |
outputs = outputs + (present_key_value_state,) + attention_outputs | |
else: | |
outputs = outputs + attention_outputs | |
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
class Pop2PianoPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = Pop2PianoConfig | |
base_model_prefix = "transformer" | |
is_parallelizable = False | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["Pop2PianoBlock"] | |
_keep_in_fp32_modules = ["wo"] | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
factor = self.config.initializer_factor # Used for testing weights initialization | |
if isinstance(module, Pop2PianoLayerNorm): | |
module.weight.data.fill_(factor * 1.0) | |
elif isinstance(module, Pop2PianoConcatEmbeddingToMel): | |
module.embedding.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
elif isinstance(module, Pop2PianoForConditionalGeneration): | |
# Mesh TensorFlow embeddings initialization | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 | |
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: | |
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
elif isinstance(module, Pop2PianoDenseActDense): | |
# Mesh TensorFlow FF initialization | |
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 | |
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 | |
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.wi, "bias") and module.wi.bias is not None: | |
module.wi.bias.data.zero_() | |
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | |
if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
module.wo.bias.data.zero_() | |
elif isinstance(module, Pop2PianoDenseGatedActDense): | |
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: | |
module.wi_0.bias.data.zero_() | |
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: | |
module.wi_1.bias.data.zero_() | |
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | |
if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
module.wo.bias.data.zero_() | |
elif isinstance(module, Pop2PianoAttention): | |
# Mesh TensorFlow attention initialization to avoid scaling before softmax | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 | |
d_model = self.config.d_model | |
key_value_proj_dim = self.config.d_kv | |
n_heads = self.config.num_heads | |
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) | |
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | |
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | |
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) | |
if module.has_relative_attention_bias: | |
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) | |
def _shift_right(self, input_ids): | |
decoder_start_token_id = self.config.decoder_start_token_id | |
pad_token_id = self.config.pad_token_id | |
if decoder_start_token_id is None: | |
raise ValueError( | |
"self.model.config.decoder_start_token_id has to be defined. In Pop2Piano it is usually set to the pad_token_id." | |
) | |
# shift inputs to the right | |
if is_torch_fx_proxy(input_ids): | |
# Item assignment is not supported natively for proxies. | |
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) | |
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) | |
else: | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
shifted_input_ids[..., 0] = decoder_start_token_id | |
if pad_token_id is None: | |
raise ValueError("self.model.config.pad_token_id has to be defined.") | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
return shifted_input_ids | |
class Pop2PianoStack(Pop2PianoPreTrainedModel): | |
# Copied from transformers.models.t5.modeling_t5.T5Stack.__init__ with T5->Pop2Piano,t5->pop2piano | |
def __init__(self, config, embed_tokens=None): | |
super().__init__(config) | |
self.embed_tokens = embed_tokens | |
self.is_decoder = config.is_decoder | |
self.block = nn.ModuleList( | |
[Pop2PianoBlock(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] | |
) | |
self.final_layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
self.gradient_checkpointing = False | |
# Copied from transformers.models.t5.modeling_t5.T5Stack.get_input_embeddings | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
# Copied from transformers.models.t5.modeling_t5.T5Stack.set_input_embeddings | |
def set_input_embeddings(self, new_embeddings): | |
self.embed_tokens = new_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
inputs_embeds=None, | |
head_mask=None, | |
cross_attn_head_mask=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
err_msg_prefix = "decoder_" if self.is_decoder else "" | |
raise ValueError( | |
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" | |
) | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
err_msg_prefix = "decoder_" if self.is_decoder else "" | |
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") | |
if inputs_embeds is None: | |
if self.embed_tokens is None: | |
raise ValueError("You have to initialize the model with valid token embeddings") | |
inputs_embeds = self.embed_tokens(input_ids) | |
batch_size, seq_length = input_shape | |
# required mask seq length can be calculated via length of past | |
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length | |
if use_cache is True: | |
if not self.is_decoder: | |
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") | |
if attention_mask is None: | |
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) | |
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: | |
encoder_seq_length = encoder_hidden_states.shape[1] | |
encoder_attention_mask = torch.ones( | |
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long | |
) | |
# initialize past_key_values with `None` if past does not exist | |
if past_key_values is None: | |
past_key_values = [None] * len(self.block) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.is_decoder and encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# Prepare head mask if needed | |
head_mask = self.get_head_mask(head_mask, self.config.num_layers) | |
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) | |
present_key_value_states = () if use_cache else None | |
all_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and self.is_decoder) else None | |
position_bias = None | |
encoder_decoder_position_bias = None | |
hidden_states = self.dropout(inputs_embeds) | |
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): | |
layer_head_mask = head_mask[i] | |
cross_attn_layer_head_mask = cross_attn_head_mask[i] | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.forward, | |
hidden_states, | |
extended_attention_mask, | |
position_bias, | |
encoder_hidden_states, | |
encoder_extended_attention_mask, | |
encoder_decoder_position_bias, | |
layer_head_mask, | |
cross_attn_layer_head_mask, | |
None, # past_key_value is always None with gradient checkpointing | |
use_cache, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask=extended_attention_mask, | |
position_bias=position_bias, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
encoder_decoder_position_bias=encoder_decoder_position_bias, | |
layer_head_mask=layer_head_mask, | |
cross_attn_layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
# layer_outputs is a tuple with: | |
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
if use_cache is False: | |
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] | |
hidden_states, present_key_value_state = layer_outputs[:2] | |
# We share the position biases between the layers - the first layer store them | |
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), | |
# (cross-attention position bias), (cross-attention weights) | |
position_bias = layer_outputs[2] | |
if self.is_decoder and encoder_hidden_states is not None: | |
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] | |
# append next layer key value states | |
if use_cache: | |
present_key_value_states = present_key_value_states + (present_key_value_state,) | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[3],) | |
if self.is_decoder: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[5],) | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
# Add last layer | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
present_key_value_states, | |
all_hidden_states, | |
all_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=present_key_value_states, | |
hidden_states=all_hidden_states, | |
attentions=all_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
class Pop2PianoConcatEmbeddingToMel(nn.Module): | |
"""Embedding Matrix for `composer` tokens.""" | |
def __init__(self, config): | |
super().__init__() | |
self.embedding = nn.Embedding(num_embeddings=config.composer_vocab_size, embedding_dim=config.d_model) | |
def forward(self, feature, index_value, embedding_offset): | |
index_shifted = index_value - embedding_offset | |
composer_embedding = self.embedding(index_shifted).unsqueeze(1) | |
inputs_embeds = torch.cat([composer_embedding, feature], dim=1) | |
return inputs_embeds | |
Pop2Piano_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`Pop2PianoConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class Pop2PianoForConditionalGeneration(Pop2PianoPreTrainedModel): | |
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] | |
def __init__(self, config: Pop2PianoConfig): | |
super().__init__(config) | |
self.config = config | |
self.model_dim = config.d_model | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
self.mel_conditioner = Pop2PianoConcatEmbeddingToMel(config) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.is_decoder = False | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = Pop2PianoStack(encoder_config, self.shared) | |
decoder_config = copy.deepcopy(config) | |
decoder_config.is_decoder = True | |
decoder_config.is_encoder_decoder = False | |
decoder_config.num_layers = config.num_decoder_layers | |
self.decoder = Pop2PianoStack(decoder_config, self.shared) | |
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
self.decoder.set_input_embeddings(new_embeddings) | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def get_output_embeddings(self): | |
return self.lm_head | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def get_mel_conditioner_outputs( | |
self, | |
input_features: torch.FloatTensor, | |
composer: str, | |
generation_config: GenerationConfig, | |
attention_mask: torch.FloatTensor = None, | |
): | |
""" | |
This method is used to concatenate mel conditioner tokens at the front of the input_features in order to | |
control the type of MIDI token generated by the model. | |
Args: | |
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
input features extracted from the feature extractor. | |
composer (`str`): | |
composer token which determines the type of MIDI tokens to be generated. | |
generation_config (`~generation.GenerationConfig`): | |
The generation is used to get the composer-feature_token pair. | |
attention_mask (``, *optional*): | |
For batched generation `input_features` are padded to have the same shape across all examples. | |
`attention_mask` helps to determine which areas were padded and which were not. | |
- 1 for tokens that are **not padded**, | |
- 0 for tokens that are **padded**. | |
""" | |
composer_to_feature_token = generation_config.composer_to_feature_token | |
if composer not in composer_to_feature_token.keys(): | |
raise ValueError( | |
f"Please choose a composer from {list(composer_to_feature_token.keys())}. Composer received - {composer}" | |
) | |
composer_value = composer_to_feature_token[composer] | |
composer_value = torch.tensor(composer_value, device=self.device) | |
composer_value = composer_value.repeat(input_features.shape[0]) | |
embedding_offset = min(composer_to_feature_token.values()) | |
input_features = self.mel_conditioner( | |
feature=input_features, | |
index_value=composer_value, | |
embedding_offset=embedding_offset, | |
) | |
if attention_mask is not None: | |
input_features[~attention_mask[:, 0].bool()] = 0.0 | |
# since self.mel_conditioner adds a new array at the front of inputs_embeds we need to do the same for attention_mask to keep the shapes same | |
attention_mask = torch.concatenate([attention_mask[:, 0].view(-1, 1), attention_mask], axis=1) | |
return input_features, attention_mask | |
return input_features, None | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
decoder_head_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
input_features: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for | |
labels in `[0, ..., config.vocab_size]` | |
Returns: | |
""" | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if inputs_embeds is not None and input_features is not None: | |
raise ValueError("Both `inputs_embeds` and `input_features` received! Please provide only one of them") | |
elif input_features is not None and inputs_embeds is None: | |
inputs_embeds = input_features | |
# Encode if needed (training, first prediction pass) | |
if encoder_outputs is None: | |
# Convert encoder inputs in embeddings if needed | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
hidden_states = encoder_outputs[0] | |
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: | |
# get decoder inputs from shifting lm labels to the right | |
decoder_input_ids = self._shift_right(labels) | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
past_key_values=past_key_values, | |
encoder_hidden_states=hidden_states, | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = decoder_outputs[0] | |
if self.config.tie_word_embeddings: | |
# Rescale output before projecting on vocab | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 | |
sequence_output = sequence_output * (self.model_dim**-0.5) | |
lm_logits = self.lm_head(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=-100) | |
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) | |
if not return_dict: | |
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs | |
return ((loss,) + output) if loss is not None else output | |
return Seq2SeqLMOutput( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
def generate( | |
self, | |
input_features, | |
attention_mask=None, | |
composer="composer1", | |
generation_config=None, | |
**kwargs, | |
): | |
""" | |
Generates token ids for midi outputs. | |
<Tip warning={true}> | |
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the | |
model's default generation configuration. You can override any `generation_config` by passing the corresponding | |
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation | |
strategies and code examples, check out the [following guide](./generation_strategies). | |
</Tip> | |
Parameters: | |
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
This is the featurized version of audio generated by `Pop2PianoFeatureExtractor`. | |
attention_mask: | |
For batched generation `input_features` are padded to have the same shape across all examples. | |
`attention_mask` helps to determine which areas were padded and which were not. | |
- 1 for tokens that are **not padded**, | |
- 0 for tokens that are **padded**. | |
composer (`str`, *optional*, defaults to `"composer1"`): | |
This value is passed to `Pop2PianoConcatEmbeddingToMel` to generate different embeddings for each | |
`"composer"`. Please make sure that the composet value is present in `composer_to_feature_token` in | |
`generation_config`. For an example please see | |
https://huggingface.co/sweetcocoa/pop2piano/blob/main/generation_config.json . | |
generation_config (`~generation.GenerationConfig`, *optional*): | |
The generation configuration to be used as base parametrization for the generation call. `**kwargs` | |
passed to generate matching the attributes of `generation_config` will override them. If | |
`generation_config` is not provided, the default will be used, which had the following loading | |
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model | |
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s | |
default values, whose documentation should be checked to parameterize generation. | |
kwargs: | |
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be | |
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder | |
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. | |
Return: | |
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` | |
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. | |
Since Pop2Piano is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible | |
[`~utils.ModelOutput`] types are: | |
- [`~generation.GenerateEncoderDecoderOutput`], | |
- [`~generation.GenerateBeamEncoderDecoderOutput`] | |
""" | |
if generation_config is None: | |
generation_config = self.generation_config | |
generation_config.update(**kwargs) | |
# check for composer_to_feature_token | |
if not hasattr(generation_config, "composer_to_feature_token"): | |
raise ValueError( | |
"`composer_to_feature_token` was not found! Please refer to " | |
"https://huggingface.co/sweetcocoa/pop2piano/blob/main/generation_config.json" | |
"and parse a dict like that." | |
) | |
if len(generation_config.composer_to_feature_token) != self.config.composer_vocab_size: | |
raise ValueError( | |
"config.composer_vocab_size must be same as the number of keys in " | |
f"generation_config.composer_to_feature_token! " | |
f"Found {self.config.composer_vocab_size} vs {len(generation_config.composer_to_feature_token)}." | |
) | |
# to control the variation of generated MIDI tokens we concatenate mel-conditioner tokens(which depends on composer_token) | |
# at the front of input_features. | |
input_features, attention_mask = self.get_mel_conditioner_outputs( | |
input_features=input_features, | |
attention_mask=attention_mask, | |
composer=composer, | |
generation_config=generation_config, | |
) | |
return super().generate( | |
inputs=None, | |
inputs_embeds=input_features, | |
attention_mask=attention_mask, | |
generation_config=generation_config, | |
**kwargs, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
use_cache=None, | |
encoder_outputs=None, | |
**kwargs, | |
): | |
# cut decoder_input_ids if past is used | |
if past_key_values is not None: | |
input_ids = input_ids[:, -1:] | |
return { | |
"decoder_input_ids": input_ids, | |
"past_key_values": past_key_values, | |
"encoder_outputs": encoder_outputs, | |
"attention_mask": attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
"use_cache": use_cache, | |
} | |
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
return self._shift_right(labels) | |
def _reorder_cache(self, past_key_values, beam_idx): | |
# if decoder past is not included in output | |
# speedy decoding is disabled and no need to reorder | |
if past_key_values is None: | |
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") | |
return past_key_values | |
reordered_decoder_past = () | |
for layer_past_states in past_key_values: | |
# get the correct batch idx from layer past batch dim | |
# batch dim of `past` is at 2nd position | |
reordered_layer_past_states = () | |
for layer_past_state in layer_past_states: | |
# need to set correct `past` for each of the four key / value states | |
reordered_layer_past_states = reordered_layer_past_states + ( | |
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), | |
) | |
if reordered_layer_past_states[0].shape != layer_past_states[0].shape: | |
raise ValueError( | |
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" | |
) | |
if len(reordered_layer_past_states) != len(layer_past_states): | |
raise ValueError( | |
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" | |
) | |
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) | |
return reordered_decoder_past | |