Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/prophetnet
/configuration_prophetnet.py
# coding=utf-8 | |
# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""ProphetNet model configuration""" | |
from typing import Callable, Optional, Union | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class ProphetNetConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`ProphetNetModel`]. It is used to instantiate a | |
ProphetNet model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the ProphetNet | |
[microsoft/prophetnet-large-uncased](https://huggingface.co/microsoft/prophetnet-large-uncased) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
activation_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for activations inside the fully connected layer. | |
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by | |
the `inputs_ids` passed when calling [`ProphetNetModel`]. | |
hidden_size (`int`, *optional*, defaults to 1024): | |
Dimensionality of the layers and the pooler layer. | |
encoder_ffn_dim (`int`, *optional*, defaults to 4096): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
num_encoder_layers (`int`, *optional*, defaults to 12): | |
Number of encoder layers. | |
num_encoder_attention_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
decoder_ffn_dim (`int`, *optional*, defaults to 4096): | |
Dimensionality of the `intermediate` (often named feed-forward) layer in decoder. | |
num_decoder_layers (`int`, *optional*, defaults to 12): | |
Number of decoder layers. | |
num_decoder_attention_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
attention_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
init_std (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
add_cross_attention (`bool`, *optional*, defaults to `True`): | |
Whether cross-attention layers should be added to the model. | |
is_encoder_decoder (`bool`, *optional*, defaults to `True`): | |
Whether this is an encoder/decoder model. | |
pad_token_id (`int`, *optional*, defaults to 1) | |
Padding token id. | |
bos_token_id (`int`, *optional*, defaults to 0) | |
Beginning of stream token id. | |
eos_token_id (`int`, *optional*, defaults to 2) | |
End of stream token id. | |
ngram (`int`, *optional*, defaults to 2) | |
Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first | |
token. | |
num_buckets (`int`, *optional*, defaults to 32) | |
The number of buckets to use for each attention layer. This is for relative position calculation. See the | |
[T5 paper](see https://arxiv.org/abs/1910.10683) for more details. | |
relative_max_distance (`int`, *optional*, defaults to 128) | |
Relative distances greater than this number will be put into the last same bucket. This is for relative | |
position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details. | |
disable_ngram_loss (`bool`, *optional*, defaults to `False`): | |
Whether be trained predicting only the next first token. | |
eps (`float`, *optional*, defaults to 0.0): | |
Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label | |
smoothing is performed. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
""" | |
model_type = "prophetnet" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = { | |
"num_attention_heads": "num_encoder_attention_heads", | |
} | |
def __init__( | |
self, | |
activation_dropout: Optional[float] = 0.1, | |
activation_function: Optional[Union[str, Callable]] = "gelu", | |
vocab_size: Optional[int] = 30522, | |
hidden_size: Optional[int] = 1024, | |
encoder_ffn_dim: Optional[int] = 4096, | |
num_encoder_layers: Optional[int] = 12, | |
num_encoder_attention_heads: Optional[int] = 16, | |
decoder_ffn_dim: Optional[int] = 4096, | |
num_decoder_layers: Optional[int] = 12, | |
num_decoder_attention_heads: Optional[int] = 16, | |
attention_dropout: Optional[float] = 0.1, | |
dropout: Optional[float] = 0.1, | |
max_position_embeddings: Optional[int] = 512, | |
init_std: Optional[float] = 0.02, | |
is_encoder_decoder: Optional[bool] = True, | |
add_cross_attention: Optional[bool] = True, | |
decoder_start_token_id: Optional[int] = 0, | |
ngram: Optional[int] = 2, | |
num_buckets: Optional[int] = 32, | |
relative_max_distance: Optional[int] = 128, | |
disable_ngram_loss: Optional[bool] = False, | |
eps: Optional[float] = 0.0, | |
use_cache: Optional[bool] = True, | |
pad_token_id: Optional[int] = 0, | |
bos_token_id: Optional[int] = 1, | |
eos_token_id: Optional[int] = 2, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.encoder_ffn_dim = encoder_ffn_dim | |
self.num_encoder_layers = num_encoder_layers | |
self.num_encoder_attention_heads = num_encoder_attention_heads | |
self.decoder_ffn_dim = decoder_ffn_dim | |
self.num_decoder_layers = num_decoder_layers | |
self.num_decoder_attention_heads = num_decoder_attention_heads | |
self.max_position_embeddings = max_position_embeddings | |
self.init_std = init_std # Normal(0, this parameter) | |
self.activation_function = activation_function | |
# parameters for prophetnet | |
self.ngram = ngram | |
self.num_buckets = num_buckets | |
self.relative_max_distance = relative_max_distance | |
self.disable_ngram_loss = disable_ngram_loss | |
self.eps = eps | |
# 3 Types of Dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.dropout = dropout | |
self.use_cache = use_cache | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
is_encoder_decoder=is_encoder_decoder, | |
add_cross_attention=add_cross_attention, | |
decoder_start_token_id=decoder_start_token_id, | |
**kwargs, | |
) | |
def num_hidden_layers(self) -> int: | |
return self.num_encoder_layers + self.num_decoder_layers | |
def num_hidden_layers(self, value): | |
raise NotImplementedError( | |
"This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" | |
" `num_decoder_layers`." | |
) | |