Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/prophetnet
/modeling_prophetnet.py
# coding=utf-8 | |
# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch ProphetNet model, ported from ProphetNet repo(fairsequery_states version).""" | |
import copy | |
import math | |
import warnings | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import Tensor, nn | |
from torch.nn import LayerNorm | |
from ...activations import ACT2FN | |
from ...modeling_outputs import BaseModelOutput | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_prophetnet import ProphetNetConfig | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "ProphenetConfig" | |
_CHECKPOINT_FOR_DOC = "microsoft/prophetnet-large-uncased" | |
PROPHETNET_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted | |
from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the | |
file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`. | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and | |
behavior. | |
Parameters: | |
config ([`ProphetNetConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
PROPHETNET_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) | |
ProphetNet uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If | |
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of | |
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
PROPHETNET_STANDALONE_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
def softmax(hidden_state, dim, onnx_trace=False): | |
if onnx_trace: | |
return nn.functional.softmax(hidden_state.float(), dim=dim) | |
else: | |
return nn.functional.softmax(hidden_state, dim=dim, dtype=torch.float32) | |
def ngram_attention_bias(sequence_length, ngram, device, dtype): | |
""" | |
This function computes the bias for the predict stream | |
""" | |
left_block = ( | |
torch.ones((ngram, sequence_length, sequence_length), device=device, dtype=dtype) * torch.finfo(dtype).min | |
) | |
right_block = left_block.detach().clone() | |
# create bias | |
for stream_idx in range(ngram): | |
right_block[stream_idx].fill_diagonal_(0, wrap=False) | |
left_block[stream_idx].triu_(-stream_idx + 1) | |
left_block[:, :, 0] = 0 | |
return torch.cat([left_block, right_block], dim=2) | |
def compute_relative_buckets(num_buckets, max_distance, relative_positions, is_bidirectional=False): | |
""" | |
This function computes individual parts of the relative position buckets. For more detail, see paper. | |
""" | |
inv_relative_positions = -relative_positions | |
rel_positions_bucket = 0 | |
if is_bidirectional: | |
num_buckets = num_buckets // 2 | |
rel_positions_bucket = ( | |
rel_positions_bucket | |
+ torch.lt(inv_relative_positions, torch.zeros_like(inv_relative_positions)).int() * num_buckets | |
) | |
inv_relative_positions = torch.abs(inv_relative_positions) | |
else: | |
inv_relative_positions = torch.max(inv_relative_positions, torch.zeros_like(inv_relative_positions)) | |
max_exact = num_buckets // 2 | |
is_small = torch.lt(inv_relative_positions, max_exact) | |
val_if_large = max_exact + torch.log(inv_relative_positions.float() / max_exact) / math.log( | |
max_distance / max_exact | |
) * (num_buckets - max_exact) | |
val_if_large = torch.min(val_if_large, torch.ones_like(val_if_large) * (num_buckets - 1)).int() | |
rel_positions_bucket = rel_positions_bucket + torch.where(is_small, inv_relative_positions.int(), val_if_large) | |
return rel_positions_bucket | |
def compute_all_stream_relative_buckets(num_buckets, max_distance, position_ids): | |
""" | |
This function computes both main and predict relative position buckets. For more detail, see paper. | |
""" | |
# main stream | |
main_stream_relative_positions = position_ids.unsqueeze(1).repeat(1, position_ids.size(-1), 1) | |
main_stream_relative_positions = main_stream_relative_positions - position_ids.unsqueeze(-1) | |
# predicting stream | |
predicting_stream_relative_positions = torch.cat((position_ids - 1, position_ids), dim=-1).unsqueeze(1) | |
predicting_stream_relative_positions = predicting_stream_relative_positions.repeat(1, position_ids.size(-1), 1) | |
predicting_stream_relative_positions = predicting_stream_relative_positions - position_ids.unsqueeze(-1) | |
# get both position buckets | |
main_relative_position_buckets = compute_relative_buckets( | |
num_buckets, max_distance, main_stream_relative_positions, is_bidirectional=False | |
) | |
predict_relative_position_buckets = compute_relative_buckets( | |
num_buckets, max_distance, predicting_stream_relative_positions, is_bidirectional=False | |
) | |
return main_relative_position_buckets, predict_relative_position_buckets | |
class ProphetNetSeq2SeqLMOutput(ModelOutput): | |
""" | |
Base class for sequence-to-sequence language models outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): | |
Prediction scores of the main stream language modeling head (scores for each vocabulary token before | |
SoftMax). | |
logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): | |
Prediction scores of the predict stream language modeling head (scores for each vocabulary token before | |
SoftMax). | |
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, | |
num_attn_heads, decoder_sequence_length, embed_size_per_head)`). | |
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be | |
used (see `past_key_values` input) to speed up sequential decoding. | |
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, decoder_sequence_length, hidden_size)`. | |
Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. | |
decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. | |
Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding | |
outputs. | |
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
decoder_sequence_length, decoder_sequence_length)`. | |
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
decoder_sequence_length, decoder_sequence_length)`. | |
Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the | |
weighted average in the self-attention heads. | |
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
encoder_sequence_length, decoder_sequence_length)`. | |
Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to | |
compute the weighted average in the | |
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder of the model. | |
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, encoder_sequence_length, hidden_size)`. | |
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. | |
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention | |
softmax, used to compute the weighted average in the self-attention heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
logits_ngram: Optional[torch.FloatTensor] = None | |
past_key_values: Optional[Tuple[torch.FloatTensor]] = None | |
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_last_hidden_state: Optional[torch.FloatTensor] = None | |
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
def decoder_cross_attentions(self): | |
warnings.warn( | |
"`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" | |
" instead.", | |
FutureWarning, | |
) | |
return self.cross_attentions | |
class ProphetNetSeq2SeqModelOutput(ModelOutput): | |
""" | |
Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential | |
decoding. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): | |
Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. | |
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, | |
hidden_size)` is output. | |
last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size,ngram * decoder_sequence_length, config.vocab_size)`, *optional*): | |
Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. | |
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, | |
num_attn_heads, decoder_sequence_length, embed_size_per_head)`). | |
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be | |
used (see `past_key_values` input) to speed up sequential decoding. | |
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, decoder_sequence_length, hidden_size)`. | |
Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. | |
decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. | |
Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding | |
outputs. | |
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
decoder_sequence_length, decoder_sequence_length)`. | |
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
decoder_sequence_length, decoder_sequence_length)`. | |
Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the | |
weighted average in the | |
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
encoder_sequence_length, decoder_sequence_length)`. | |
Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to | |
compute the weighted average in the | |
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder of the model. | |
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, encoder_sequence_length, hidden_size)`. | |
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. | |
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
encoder_sequence_length, encoder_sequence_length)`. | |
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
""" | |
last_hidden_state: torch.FloatTensor | |
last_hidden_state_ngram: Optional[torch.FloatTensor] = None | |
past_key_values: Optional[Tuple[torch.FloatTensor]] = None | |
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_last_hidden_state: Optional[torch.FloatTensor] = None | |
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
def decoder_cross_attentions(self): | |
warnings.warn( | |
"`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" | |
" instead.", | |
FutureWarning, | |
) | |
return self.cross_attentions | |
class ProphetNetDecoderModelOutput(ModelOutput): | |
""" | |
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): | |
Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. | |
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, | |
hidden_size)` is output. | |
last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): | |
Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. | |
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, | |
num_attn_heads, decoder_sequence_length, embed_size_per_head)`). | |
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be | |
used (see `past_key_values` input) to speed up sequential decoding. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, decoder_sequence_length, hidden_size)`. | |
Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. | |
ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. | |
Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding | |
outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
decoder_sequence_length, decoder_sequence_length)`. | |
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
decoder_sequence_length, decoder_sequence_length)`. | |
Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the | |
weighted average in the | |
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
encoder_sequence_length, decoder_sequence_length)`. | |
Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to | |
compute the weighted average in the | |
""" | |
last_hidden_state: torch.FloatTensor | |
last_hidden_state_ngram: Optional[torch.FloatTensor] = None | |
past_key_values: Optional[Tuple[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class ProphetNetDecoderLMOutput(ModelOutput): | |
""" | |
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): | |
Prediction scores of the main stream language modeling head (scores for each vocabulary token before | |
SoftMax). | |
logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): | |
Prediction scores of the predict stream language modeling head (scores for each vocabulary token before | |
SoftMax). | |
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, | |
num_attn_heads, decoder_sequence_length, embed_size_per_head)`). | |
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be | |
used (see `past_key_values` input) to speed up sequential decoding. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, decoder_sequence_length, hidden_size)`. | |
Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. | |
ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. | |
Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding | |
outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
decoder_sequence_length, decoder_sequence_length)`. | |
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
decoder_sequence_length, decoder_sequence_length)`. | |
Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the | |
weighted average in the | |
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, | |
encoder_sequence_length, decoder_sequence_length)`. | |
Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to | |
compute the weighted average in the | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
logits_ngram: Optional[torch.FloatTensor] = None | |
past_key_values: Optional[Tuple[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class ProphetNetPreTrainedModel(PreTrainedModel): | |
config_class = ProphetNetConfig | |
base_model_prefix = "prophetnet" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=self.config.init_std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.init_std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def _shift_right(self, input_ids): | |
decoder_start_token_id = self.config.decoder_start_token_id | |
pad_token_id = self.config.pad_token_id | |
assert decoder_start_token_id is not None, ( | |
"self.model.config.decoder_start_token_id has to be defined. In ProphetNet it is usually set to the" | |
" pad_token_id. See ProphetNet docs for more information" | |
) | |
# shift inputs to the right | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
shifted_input_ids[..., 0] = decoder_start_token_id | |
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values" | |
return shifted_input_ids | |
class ProphetNetPositionalEmbeddings(nn.Embedding): | |
""" | |
This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting | |
based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to | |
the forward function. | |
""" | |
def __init__(self, config: ProphetNetConfig) -> None: | |
self.max_length = config.max_position_embeddings | |
super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id) | |
def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None): | |
assert (position_ids is None) or ( | |
self.padding_idx is None | |
), "If position_ids is pre-computed then padding_idx should not be set." | |
if position_ids is None: | |
if past_key_values is not None: | |
# position_ids is the same for every token when decoding a single step | |
# Without the int() cast, it doesn't work in some cases when exporting to ONNX | |
prev_num_input_ids = past_key_values[0][0].shape[2] | |
num_input_ids = inputs_shape[1] + prev_num_input_ids | |
position_ids = torch.ones((1, 1), dtype=torch.long, device=device) * ( | |
int(self.padding_idx + num_input_ids) | |
) | |
else: | |
if attention_mask is None: | |
attention_mask = torch.ones(inputs_shape, dtype=torch.long, device=device) | |
# retrieve position_ids from input_ids / attention_mask | |
position_ids = ( | |
torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask | |
).long() + self.padding_idx | |
# make sure position_ids are not bigger then max_length | |
position_ids = position_ids.clamp(0, self.max_length - 1) | |
return super().forward(position_ids), position_ids | |
def _forward(self, position_ids): | |
return super().forward(position_ids) | |
class ProphetNetAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
config: ProphetNetConfig, | |
num_attn_heads: int, | |
): | |
super().__init__() | |
hidden_size = config.hidden_size | |
self.attention_dropout = config.attention_dropout | |
self.dropout = config.dropout | |
self.num_attn_heads = num_attn_heads | |
self.head_dim = hidden_size // num_attn_heads | |
assert self.head_dim * num_attn_heads == hidden_size, ( | |
"`config.hidden_size` must be divisible by `config.num_encoder_attention_heads` and" | |
" `config.num_decoder_attention_heads`" | |
) | |
self.key_proj = nn.Linear(hidden_size, hidden_size) | |
self.value_proj = nn.Linear(hidden_size, hidden_size) | |
self.query_proj = nn.Linear(hidden_size, hidden_size) | |
self.out_proj = nn.Linear(hidden_size, hidden_size) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states, | |
key_value_states: Optional[Tensor] = None, | |
attention_mask: Optional[Tensor] = None, | |
layer_head_mask: Optional[Tensor] = None, | |
past_key_value: Optional[Tuple[Tensor]] = None, | |
output_attentions: bool = False, | |
) -> Tuple[Tensor, Optional[Tensor]]: | |
batch_size, tgt_len, hidden_size = hidden_states.size() | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
assert list(hidden_states.size()) == [ | |
batch_size, | |
tgt_len, | |
hidden_size, | |
], f"Size of hidden states should be {batch_size, tgt_len, hidden_size}, but is {hidden_states.size()}" | |
# previous time steps are cached - no need to recompute key and value if they are static | |
query_states = self.query_proj(hidden_states) / (self.head_dim**0.5) | |
if is_cross_attention and past_key_value is not None: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape(self.key_proj(key_value_states), -1, batch_size) | |
value_states = self._shape(self.value_proj(key_value_states), -1, batch_size) | |
else: | |
# self_attention | |
key_states = self._shape(self.key_proj(hidden_states), -1, batch_size) | |
value_states = self._shape(self.value_proj(hidden_states), -1, batch_size) | |
if is_cross_attention: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
# project states into the correct shape | |
proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, batch_size).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
src_len = key_states.size(2) | |
attn_weights = torch.einsum("bsij,bsjk->bsik", query_states, key_states.transpose(2, 3)) | |
expected_shape = (batch_size, self.num_attn_heads, tgt_len, src_len) | |
if attn_weights.size() != expected_shape: | |
raise ValueError(f"Attention weights should have size {expected_shape}, but is {attn_weights.size()}") | |
# This is part of a workaround to get around fork/join parallelism not supporting Optional types. | |
if attention_mask is not None and attention_mask.dim() == 0: | |
attention_mask = None | |
expected_shape = (batch_size, self.num_attn_heads, 1, src_len) | |
if attention_mask is not None and attention_mask.size() != expected_shape: | |
raise ValueError(f"Attention mask should have size {expected_shape}, but is {attention_mask.size()}") | |
if attention_mask is not None: # don't attend to padding symbols | |
attn_weights = attn_weights + attention_mask | |
if output_attentions: | |
attn_weights_reshaped = attn_weights | |
else: | |
attn_weights_reshaped = None | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
assert layer_head_mask.size() == (self.num_attn_heads,), ( | |
f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view( | |
batch_size, self.num_attn_heads, tgt_len, src_len | |
) | |
# apply head_mask also on attn_weights_reshaped which is used for n-gram attention inside the model | |
attn_weights_reshaped = layer_head_mask.view(1, -1, 1, 1) * attn_weights_reshaped | |
attn_probs = nn.functional.dropout( | |
attn_weights, | |
p=self.attention_dropout, | |
training=self.training, | |
) | |
attn_output = torch.einsum("bsij,bsjk->bsik", attn_probs, value_states) | |
expected_shape = (batch_size, self.num_attn_heads, tgt_len, self.head_dim) | |
if attn_output.size() != expected_shape: | |
raise ValueError(f"`attn_output` should have shape {expected_shape}, but is of shape {attn_output.size()}") | |
attn_output = attn_output.transpose(1, 2).reshape(batch_size, tgt_len, hidden_size) | |
attn_output = self.out_proj(attn_output) | |
attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) | |
return attn_output, attn_weights_reshaped, past_key_value | |
class ProphetNetFeedForward(nn.Module): | |
""" | |
This is the residual two feed-forward layer block based on the original Transformer implementation. | |
""" | |
def __init__(self, config: ProphetNetConfig, ffn_dim: int): | |
super().__init__() | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.intermediate = nn.Linear(config.hidden_size, ffn_dim) | |
self.output = nn.Linear(ffn_dim, config.hidden_size) | |
self.activation_dropout = config.activation_dropout | |
self.dropout = config.dropout | |
def forward(self, hidden_states): | |
hidden_states = self.intermediate(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
hidden_states = self.output(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
return hidden_states | |
class ProphetNetNgramSelfAttention(nn.Module): | |
def __init__(self, config: ProphetNetConfig): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.num_buckets = config.num_buckets | |
self.relative_max_distance = config.relative_max_distance | |
self.num_attn_heads = config.num_decoder_attention_heads | |
self.dropout = config.dropout | |
self.attention_dropout = config.attention_dropout | |
self.head_dim = config.hidden_size // self.num_attn_heads | |
self.ngram = config.ngram | |
assert ( | |
self.head_dim * self.num_attn_heads == config.hidden_size | |
), "config.hidden_size must be divisible by num_attn_heads" | |
# key, value, query projection | |
self.key_proj = nn.Linear(config.hidden_size, config.hidden_size) | |
self.value_proj = nn.Linear(config.hidden_size, config.hidden_size) | |
self.query_proj = nn.Linear(config.hidden_size, config.hidden_size) | |
# out projection | |
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size) | |
# rel position embeddings | |
self.relative_pos_embeddings = nn.Linear(config.hidden_size, self.num_buckets * self.num_attn_heads) | |
# for onnx runtime | |
self.onnx_trace = False | |
def _shape(self, tensor, seq_len, batch_size): | |
return tensor.view(batch_size, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() | |
def prepare_for_onnx_export_(self): | |
self.onnx_trace = True | |
def forward( | |
self, | |
hidden_states, | |
past_key_value: Optional[Tuple[Tensor]] = None, | |
attention_mask=None, | |
layer_head_mask=None, | |
extended_predict_attention_mask=None, | |
main_relative_position_buckets=None, | |
predict_relative_position_buckets=None, | |
position_ids=None, | |
): | |
batch_size, ngram_sequence_length, hidden_size = hidden_states.size() | |
assert list(hidden_states.size()) == [batch_size, ngram_sequence_length, hidden_size], ( | |
f"`hidden_states` should be of shape {batch_size, ngram_sequence_length, hidden_size}, but is of shape" | |
f" {hidden_states.shape}" | |
) | |
# project | |
query_states = self.query_proj(hidden_states) | |
key_states = self.key_proj(hidden_states) | |
value_states = self.value_proj(hidden_states) | |
# normalize | |
query_states = query_states / (self.head_dim**0.5) | |
# reshape | |
query_states = self._shape(query_states, ngram_sequence_length, batch_size) | |
key_states = self._shape(key_states, -1, batch_size) | |
value_states = self._shape(value_states, -1, batch_size) | |
proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) | |
query_states = query_states.view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
# chunk into main stream and predict stream | |
hidden_states_list = hidden_states.chunk(1 + self.ngram, dim=1) | |
query_states_list = query_states.chunk(1 + self.ngram, dim=2) | |
key_states_list = key_states.chunk(1 + self.ngram, dim=2) | |
value_states_list = value_states.chunk(1 + self.ngram, dim=2) | |
main_hidden_states, hidden_states_predict_list = hidden_states_list[0], hidden_states_list[1:] | |
main_query_states, predict_query_states_list = query_states_list[0], query_states_list[1:] | |
main_key_states, predict_key_states_list = key_states_list[0], key_states_list[1:] | |
main_value_states, predict_value_states_list = value_states_list[0], value_states_list[1:] | |
# saved states are stored with shape (batch_size, num_attn_heads, seq_len, head_dim) | |
if past_key_value is not None: | |
prev_main_key_states = past_key_value[0] | |
main_key_states = torch.cat((prev_main_key_states, main_key_states), dim=2) | |
prev_main_value_states = past_key_value[1] | |
main_value_states = torch.cat((prev_main_value_states, main_value_states), dim=2) | |
# Update cache | |
past_key_value = (main_key_states, main_value_states) | |
# get seq_length of main stream only | |
sequence_length = ngram_sequence_length // (1 + self.ngram) | |
# MAIN-STREAM | |
# main attn weights | |
# [batch_size, number_heads, sequence_length, head_dimesion] | |
# x [batch_size, number_heads, head_dimesion, sequence_length] | |
# -> [batch_size, number_heads, sequence_length, sequence_length] | |
main_attn_weights = torch.einsum("bntc,bncs->bnts", main_query_states, main_key_states.transpose(2, 3)) | |
# retrieve relative position embeddings for each layer -> see paper for more details | |
main_relative_pos_embeddings = self.get_main_relative_pos_embeddings( | |
main_hidden_states, main_attn_weights, position_ids, main_relative_position_buckets | |
) | |
main_attn_weights = main_attn_weights + main_relative_pos_embeddings | |
if attention_mask is not None: | |
main_attn_weights = main_attn_weights + attention_mask | |
main_attn_probs = softmax( | |
main_attn_weights, | |
dim=-1, | |
onnx_trace=self.onnx_trace, | |
).type_as(main_attn_weights) | |
if layer_head_mask is not None: | |
assert layer_head_mask.size() == (self.num_attn_heads,), ( | |
f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
main_attn_probs = layer_head_mask.view(1, -1, 1, 1) * main_attn_probs.view( | |
batch_size, self.num_attn_heads, -1, sequence_length | |
) | |
main_attn_probs = nn.functional.dropout(main_attn_probs, p=self.attention_dropout, training=self.training) | |
# project to attn_output | |
# [batch_size, number_heads, sequence_length, sequence_length] | |
# x [batch_size, number_heads, sequence_length, head_dimesion] | |
# -> [batch_size, number_heads, sequence_length, head_dimesion] | |
main_attn_output = torch.einsum("bntc,bncs->bnts", main_attn_probs, main_value_states) | |
# reshape so that num_heads dim is merged into last `head_dim` axis | |
main_attn_output = main_attn_output.transpose(1, 2).reshape(batch_size, 1, sequence_length, hidden_size) | |
main_attn_output = self.out_proj(main_attn_output) | |
# PREDICT-STREAM | |
# [batch_size, ngram, number_heads, sequence_length, head_dimesion] | |
predict_query_states = torch.stack(predict_query_states_list, 1).view( | |
batch_size, self.ngram, self.num_attn_heads, sequence_length, self.head_dim | |
) | |
# [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] | |
predict_key_states = torch.stack([torch.cat([main_key_states, key], 2) for key in predict_key_states_list], 1) | |
# [batch_size, sequence_length, ngram, hidden_size] | |
predict_hidden_states = torch.stack(hidden_states_predict_list, dim=2) | |
# [batch_size, number_heads, ngram, 2*sequence_length, head_dimesion] | |
predict_value_states = torch.cat( | |
[torch.cat([main_value_states, v_p], 2).unsqueeze(2) for v_p in predict_value_states_list], 2 | |
) | |
# [batch_size, ngram, number_heads, sequence_length, head_dimesion] | |
# x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] | |
# -> [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] | |
predict_attn_weights = torch.einsum("bnhtc,bnhsc->bnhts", (predict_query_states, predict_key_states)) | |
# retrieve relative position embeddings for each layer -> see paper for more details | |
# [batch_size, ngram, number_heads, sequence_length, predict_relative_pos_embeddings] | |
predict_relative_pos_embeddings = self.get_predict_relative_pos_embeddings( | |
predict_hidden_states, predict_attn_weights, position_ids, predict_relative_position_buckets | |
) | |
# [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] | |
predict_attn_weights = predict_attn_weights + predict_relative_pos_embeddings | |
if extended_predict_attention_mask is not None: | |
# Permuting Predict attention mask to [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] | |
extended_predict_attention_mask = extended_predict_attention_mask.permute(0, 2, 1, 3, 4) | |
extended_predict_attention_mask = extended_predict_attention_mask.to(predict_attn_weights.dtype) | |
predict_attn_weights = predict_attn_weights + extended_predict_attention_mask | |
predict_attn_probs = softmax( | |
predict_attn_weights, | |
dim=-1, | |
onnx_trace=self.onnx_trace, | |
).type_as(predict_attn_weights) | |
if layer_head_mask is not None: | |
assert layer_head_mask.size() == (self.num_attn_heads,), ( | |
f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
predict_attn_probs = layer_head_mask.view(1, 1, -1, 1, 1) * predict_attn_probs | |
predict_attn_probs = nn.functional.dropout( | |
predict_attn_probs, p=self.attention_dropout, training=self.training | |
) | |
# project to attention output | |
# [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] | |
# x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] | |
# -> [batch_size, ngram, number_heads, sequence_length, head_dimesion] | |
predict_attn_output = torch.einsum( | |
"bnhts,bnhsc->bnhtc", (predict_attn_probs, predict_value_states.transpose(1, 2)) | |
) | |
# reshape so that num_heads dim is merged into last `head_dim` axis | |
# [batch_size, ngram, number_heads, sequence_length, head_dimesion] -> [batch_size, ngram, sequence_length, hidden_size] | |
predict_attn_output = predict_attn_output.transpose(2, 3) | |
predict_attn_output = predict_attn_output.reshape(batch_size, self.ngram, sequence_length, hidden_size) | |
predict_attn_output = self.out_proj(predict_attn_output) | |
# concat to single attn output | |
# [batch_size, (1+ngram)*sequence_length, hidden_size] | |
attn_output = torch.cat([main_attn_output, predict_attn_output], 1).view(batch_size, -1, hidden_size) | |
# reshape into better form for `config.output_attentions` | |
main_attn_probs = main_attn_probs.view(batch_size, self.num_attn_heads, sequence_length, -1) | |
attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) | |
return attn_output, main_attn_probs, predict_attn_probs, past_key_value | |
def get_main_relative_pos_embeddings( | |
self, hidden_states, attn_weights, position_ids, main_relative_position_buckets | |
): | |
# input hidden_states [batch_size, sequence_length, hidden_size] | |
# input attn_weights [batch_size, num_heads, sequence_length, sequence_length] | |
# input position_ids [batch_size, sequence_length] or [1,1] | |
batch_size, num_attn_heads, tgt_len, src_len = attn_weights.shape | |
attn_weights = attn_weights.view(batch_size, num_attn_heads, tgt_len, src_len) | |
if main_relative_position_buckets is None: | |
batch_size, sequence_length = hidden_states.shape[:2] | |
relative_positions = ( | |
torch.arange(1, attn_weights.shape[-1] + 1) | |
.unsqueeze(0) | |
.unsqueeze(0) | |
.repeat(batch_size, sequence_length, 1) | |
.to(position_ids.device) | |
) | |
# [batch_size, sequence_length, sequence_length+1] | |
relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) | |
main_relative_position_buckets = compute_relative_buckets( | |
self.num_buckets, self.relative_max_distance, relative_positions, False | |
) | |
# [batch_size, sequence_length, num_buckets * num_heads] | |
rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) | |
rel_pos_embeddings = rel_pos_embeddings.view( | |
rel_pos_embeddings.shape[:2] + (self.num_buckets, self.num_attn_heads) | |
) | |
rel_pos_embeddings = rel_pos_embeddings.permute(0, 3, 1, 2) | |
# [batch_size, num_heads, sequence_length, num_buckets] | |
rel_pos_embeddings = rel_pos_embeddings.reshape(attn_weights.shape[:3] + (-1,)) | |
main_relative_position_buckets = main_relative_position_buckets.repeat(1, self.num_attn_heads, 1) | |
# [batch_size * num_heads * sequence_length, sequence_length] | |
main_relative_position_buckets = main_relative_position_buckets.view( | |
-1, main_relative_position_buckets.shape[-1] | |
) | |
main_relative_position_buckets = main_relative_position_buckets.long() | |
# [batch_size * num_heads * sequence_length, sequence_length] | |
rel_pos_embeddings = rel_pos_embeddings.reshape(-1, rel_pos_embeddings.size(-1)) | |
main_relative_pos_embeddings = torch.gather(rel_pos_embeddings, dim=1, index=main_relative_position_buckets) | |
main_relative_pos_embeddings = main_relative_pos_embeddings.view(batch_size, num_attn_heads, tgt_len, -1) | |
return main_relative_pos_embeddings | |
def get_predict_relative_pos_embeddings( | |
self, hidden_states, attn_weights, position_ids, predict_relative_position_buckets | |
): | |
# input hidden_states [batch_size, sequence_length, ngram, hidden_size] | |
# input attn_weights [batch_size, ngram, num_heads, sequence_length, 2*sequence_length] | |
# input position_ids [batch_size, sequence_length] or [1,1] | |
# input predict_relative_position_buckets [batch_size, sequence_length, 2*sequence_length] or None | |
batch_size, sequence_length = hidden_states.shape[0:2] | |
if predict_relative_position_buckets is None: | |
key_sequence_length = attn_weights.shape[-1] | |
assert ( | |
position_ids[0][0] == key_sequence_length - 1 | |
), "`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)" | |
relative_positions = ( | |
torch.arange(0, key_sequence_length) | |
.unsqueeze(0) | |
.unsqueeze(0) | |
.repeat(batch_size, sequence_length, 1) | |
.to(position_ids.device) | |
) | |
relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) | |
predict_relative_position_buckets = compute_relative_buckets( | |
self.num_buckets, self.relative_max_distance, relative_positions, False | |
) | |
# [batch_size, ngram, sequence_length, hidden_size] | |
hidden_states = hidden_states.transpose(1, 2) | |
rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) | |
# [batch_size, ngram, sequence_length, num_buckets, num_heads] | |
rel_pos_embeddings = rel_pos_embeddings.view( | |
hidden_states.shape[:-1] + (self.num_buckets, self.num_attn_heads) | |
) | |
rel_pos_embeddings = rel_pos_embeddings.permute(0, 2, 1, 4, 3) | |
# [batch_size * ngram * sequence_length * num_heads, num_buckets] | |
rel_pos_embeddings = rel_pos_embeddings.reshape(-1, self.num_buckets) | |
# [ngram, batch_size, num_heads * sequence_length, -1] | |
predict_relative_position_buckets = predict_relative_position_buckets.unsqueeze(0) | |
predict_relative_position_buckets = predict_relative_position_buckets.repeat( | |
self.ngram, 1, self.num_attn_heads, 1 | |
) | |
# [ngram * batch_size * num_heads * sequence_length, -1] | |
predict_relative_position_buckets = predict_relative_position_buckets.view( | |
-1, predict_relative_position_buckets.size(-1) | |
).long() | |
predict_relative_pos_embeddings = torch.gather( | |
rel_pos_embeddings, dim=1, index=predict_relative_position_buckets | |
) | |
# [batch_size, gram, num_heads, sequence_length, -1] | |
predict_relative_pos_embeddings = predict_relative_pos_embeddings.view( | |
batch_size, self.ngram, self.num_attn_heads, sequence_length, -1 | |
) | |
return predict_relative_pos_embeddings | |
class ProphetNetEncoderLayer(nn.Module): | |
""" | |
Encoder block for Prophetnet | |
""" | |
def __init__(self, config: ProphetNetConfig): | |
super().__init__() | |
# 1st residual block | |
self.self_attn = ProphetNetAttention(config, config.num_encoder_attention_heads) | |
self.self_attn_layer_norm = LayerNorm(config.hidden_size) | |
# 2nd residual block | |
self.feed_forward = ProphetNetFeedForward(config, config.encoder_ffn_dim) | |
self.feed_forward_layer_norm = LayerNorm(config.hidden_size) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
output_attentions: bool = False, | |
): | |
# 1st residual block | |
attention_output, attn_weights, _ = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = self.self_attn_layer_norm(attention_output + hidden_states) | |
# 2nd residual block | |
feed_forward_output = self.feed_forward(hidden_states) | |
hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
class ProphetNetDecoderLayer(nn.Module): | |
""" | |
Decoder block for Prophetnet | |
""" | |
def __init__(self, config: ProphetNetConfig): | |
super().__init__() | |
# 1st residual block | |
self.self_attn = ProphetNetNgramSelfAttention(config) | |
self.self_attn_layer_norm = LayerNorm(config.hidden_size) | |
# 2nd residual block | |
if config.add_cross_attention: | |
self.cross_attn = ProphetNetAttention(config, config.num_decoder_attention_heads) | |
self.cross_attn_layer_norm = LayerNorm(config.hidden_size) | |
# 3rd residual block | |
self.feed_forward = ProphetNetFeedForward(config, config.decoder_ffn_dim) | |
self.feed_forward_layer_norm = LayerNorm(config.hidden_size) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attn_mask=None, | |
layer_head_mask=None, | |
cross_attn_layer_head_mask=None, | |
extended_predict_attention_mask=None, | |
main_relative_position_buckets=None, | |
predict_relative_position_buckets=None, | |
position_ids=None, | |
past_key_value=None, | |
use_cache: bool = True, | |
output_attentions: bool = False, | |
): | |
# 1st residual block | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
ngram_attention_output, self_attn_weights, self_attn_weights_ngram, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
past_key_value=self_attn_past_key_value, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
extended_predict_attention_mask=extended_predict_attention_mask, | |
main_relative_position_buckets=main_relative_position_buckets, | |
predict_relative_position_buckets=predict_relative_position_buckets, | |
position_ids=position_ids, | |
) | |
hidden_states = self.self_attn_layer_norm(hidden_states + ngram_attention_output) | |
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple | |
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
cross_attn_weights = None | |
if encoder_hidden_states is not None: | |
# 2nd residual block | |
attention_output, cross_attn_weights, cross_attn_present_key_value = self.cross_attn( | |
hidden_states=hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attn_mask, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
output_attentions=output_attentions, | |
) | |
hidden_states = self.cross_attn_layer_norm(attention_output + hidden_states) | |
# add cross-attn to positions 3,4 of present_key_value tuple | |
present_key_value = present_key_value + cross_attn_present_key_value | |
# 3rd residual block | |
feed_forward_output = self.feed_forward(hidden_states) | |
hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights, self_attn_weights_ngram, cross_attn_weights) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
class ProphetNetEncoder(ProphetNetPreTrainedModel): | |
r""" | |
word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): | |
The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word | |
embeddings instead of randomly initialized word embeddings. | |
""" | |
def __init__(self, config: ProphetNetConfig, word_embeddings: nn.Embedding = None): | |
super().__init__(config) | |
self.word_embeddings = ( | |
word_embeddings | |
if word_embeddings is not None | |
else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
) | |
self.position_embeddings = ProphetNetPositionalEmbeddings(config) | |
self.embeddings_layer_norm = LayerNorm(config.hidden_size) | |
self.layers = nn.ModuleList([ProphetNetEncoderLayer(config) for _ in range(config.num_encoder_layers)]) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.word_embeddings | |
def set_input_embeddings(self, value): | |
self.word_embeddings = value | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, ProphetNetEncoder | |
>>> import torch | |
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") | |
>>> model = ProphetNetEncoder.from_pretrained("patrickvonplaten/prophetnet-large-uncased-standalone") | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is None and inputs_embeds is None: | |
raise ValueError("Either input_ids or inputs_embeds has to be passed.") | |
elif input_ids is not None and inputs_embeds is not None: | |
raise ValueError("Make sure to only pass input_ids or inputs_embeds.") | |
elif input_ids is not None and inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
# prepare attention mask | |
if attention_mask is not None: | |
extended_attention_mask = ( | |
1.0 - attention_mask[:, None, None, :].repeat(1, self.config.num_encoder_attention_heads, 1, 1) | |
) * torch.finfo(self.dtype).min | |
extended_attention_mask = extended_attention_mask.to(inputs_embeds.dtype) | |
else: | |
extended_attention_mask = None | |
position_embeddings, position_ids = self.position_embeddings(inputs_embeds.shape[:2], inputs_embeds.device) | |
hidden_states = inputs_embeds + position_embeddings | |
hidden_states = self.embeddings_layer_norm(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.config.dropout, training=self.training) | |
encoder_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
# check if head_mask has a correct number of layers specified if desired | |
if head_mask is not None: | |
assert head_mask.size()[0] == ( | |
len(self.layers) | |
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_hidden_states = encoder_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
encoder_layer.__call__, | |
hidden_states, | |
extended_attention_mask, | |
(head_mask[idx] if head_mask is not None else None), | |
output_attentions, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask=extended_attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_hidden_states = encoder_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_hidden_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_hidden_states, attentions=all_attentions | |
) | |
class ProphetNetDecoder(ProphetNetPreTrainedModel): | |
r""" | |
word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): | |
The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word | |
embeddings instead of randomly initialized word embeddings. | |
""" | |
def __init__(self, config: ProphetNetConfig, word_embeddings: Optional[nn.Embedding] = None): | |
super().__init__(config) | |
self.ngram = config.ngram | |
self.num_buckets = config.num_buckets | |
self.relative_max_distance = config.relative_max_distance | |
self.dropout = config.dropout | |
self.max_target_positions = config.max_position_embeddings | |
self.word_embeddings = ( | |
word_embeddings | |
if word_embeddings is not None | |
else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
) | |
self.position_embeddings = ProphetNetPositionalEmbeddings(config) | |
self.ngram_embeddings = nn.Embedding(self.ngram, config.hidden_size, None) | |
self.layers = nn.ModuleList([ProphetNetDecoderLayer(config) for _ in range(config.num_decoder_layers)]) | |
self.embeddings_layer_norm = LayerNorm(config.hidden_size) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.word_embeddings | |
def set_input_embeddings(self, value): | |
self.word_embeddings = value | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, ProphetNetDecoderModelOutput]: | |
r""" | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
the model is configured as a decoder. | |
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, ProphetNetDecoder | |
>>> import torch | |
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") | |
>>> model = ProphetNetDecoder.from_pretrained("microsoft/prophetnet-large-uncased", add_cross_attention=False) | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
```""" | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is None and inputs_embeds is None: | |
raise ValueError("Either `decoder_input_ids` or `decoder_inputs_embeds` has to be passed.") | |
elif input_ids is not None and inputs_embeds is not None: | |
raise ValueError("Make sure to only pass `decoder_input_ids` or `decoder_inputs_embeds`.") | |
elif input_ids is not None and inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
batch_size, sequence_length = inputs_embeds.shape[:2] | |
main_stream_pos_embed, position_ids = self.position_embeddings( | |
(batch_size, sequence_length), | |
device=inputs_embeds.device, | |
past_key_values=past_key_values, | |
) | |
if past_key_values is not None: | |
main_relative_position_buckets, predict_relative_position_buckets = None, None | |
else: | |
( | |
main_relative_position_buckets, | |
predict_relative_position_buckets, | |
) = self.compute_buffered_relative_buckets(position_ids) | |
predicting_stream_pos_embed = self.position_embeddings._forward(position_ids + 1) | |
# add position embeddings | |
hidden_states = inputs_embeds + main_stream_pos_embed | |
ngram_embeddings = self.ngram_embeddings.weight | |
# prepare attention mask | |
if past_key_values is not None: | |
assert ( | |
hidden_states.size(1) == 1 | |
), "At the moment `use_cache` is only supported for `decoder_input_ids` of length 1" | |
ngram_hidden_states = [ | |
(ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).repeat(batch_size, 1, 1) | |
for ngram in range(self.ngram) | |
] | |
extended_attention_mask = None | |
extended_predict_attention_mask = None | |
else: | |
ngram_hidden_states = [ | |
(ngram_embeddings[ngram - 1] + predicting_stream_pos_embed) for ngram in range(self.ngram) | |
] | |
extended_attention_mask = self.prepare_attention_mask(hidden_states, attention_mask) | |
extended_predict_attention_mask = self.prepare_predict_attention_mask(hidden_states, attention_mask) | |
# prepare encoder attention mask | |
if encoder_attention_mask is not None: | |
extended_encoder_attention_mask = ( | |
1.0 - encoder_attention_mask[:, None, None, :].repeat(1, self.config.num_decoder_attention_heads, 1, 1) | |
) * torch.finfo(self.dtype).min | |
extended_encoder_attention_mask = extended_encoder_attention_mask.to(inputs_embeds.dtype) | |
else: | |
extended_encoder_attention_mask = None | |
hidden_states = torch.cat([hidden_states] + ngram_hidden_states, 1) | |
if self.embeddings_layer_norm: | |
hidden_states = self.embeddings_layer_norm(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
# init attentions, hidden_states and cache with empty tuples | |
all_main_stream_hidden_states = () if output_hidden_states else None | |
all_ngram_stream_hidden_states = () if output_hidden_states and self.config.ngram > 0 else None | |
all_main_stream_attns = () if output_attentions else None | |
all_ngram_stream_attns = () if output_attentions else None | |
all_cross_attns = () if output_attentions and self.config.add_cross_attention else None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
present_key_values = () if use_cache else None | |
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired | |
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): | |
if attn_mask is not None: | |
assert attn_mask.size()[0] == (len(self.layers)), ( | |
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" | |
f" {head_mask.size()[0]}." | |
) | |
for idx, decoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
# grad cannot be kept because tensor is sliced | |
all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) | |
if self.config.ngram > 0: | |
all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) | |
past_key_value = past_key_values[idx] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
extended_attention_mask, | |
encoder_hidden_states, | |
extended_encoder_attention_mask, | |
(head_mask[idx] if head_mask is not None else None), | |
(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), | |
extended_predict_attention_mask, | |
main_relative_position_buckets, | |
predict_relative_position_buckets, | |
position_ids, | |
None, | |
use_cache, | |
output_attentions, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=extended_attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attn_mask=extended_encoder_attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
cross_attn_layer_head_mask=( | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None | |
), | |
extended_predict_attention_mask=extended_predict_attention_mask, | |
main_relative_position_buckets=main_relative_position_buckets, | |
predict_relative_position_buckets=predict_relative_position_buckets, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
present_key_values += (layer_outputs[4 if output_attentions else 1],) | |
if output_attentions: | |
all_main_stream_attns += (layer_outputs[1],) | |
all_ngram_stream_attns += (layer_outputs[2],) | |
if self.config.add_cross_attention: | |
all_cross_attns += (layer_outputs[3],) | |
if output_hidden_states: | |
all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) | |
if self.config.ngram > 0: | |
all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) | |
# split last_hidden_state for return | |
last_hidden_state = hidden_states[:, :sequence_length] | |
last_hidden_state_ngram = hidden_states[:, sequence_length:] if self.config.ngram > 0 else None | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
last_hidden_state, | |
last_hidden_state_ngram, | |
present_key_values, | |
all_main_stream_hidden_states, | |
all_ngram_stream_hidden_states, | |
all_main_stream_attns, | |
all_ngram_stream_attns, | |
all_cross_attns, | |
] | |
if v is not None | |
) | |
return ProphetNetDecoderModelOutput( | |
last_hidden_state=last_hidden_state, | |
last_hidden_state_ngram=last_hidden_state_ngram, | |
past_key_values=present_key_values, | |
hidden_states=all_main_stream_hidden_states, | |
hidden_states_ngram=all_ngram_stream_hidden_states, | |
attentions=all_main_stream_attns, | |
ngram_attentions=all_ngram_stream_attns, | |
cross_attentions=all_cross_attns, | |
) | |
def compute_buffered_relative_buckets(self, position_ids): | |
batch_size, sequence_length = position_ids.shape | |
position_ids = torch.arange(1, self.max_target_positions).to(position_ids.device).repeat(1, 1) | |
main_relative_buckets, predict_relative_buckets = compute_all_stream_relative_buckets( | |
self.num_buckets, self.relative_max_distance, position_ids | |
) | |
# buffer relative buckets | |
main_relative_buckets = main_relative_buckets[:, :sequence_length, :sequence_length].repeat(batch_size, 1, 1) | |
predict_relative_buckets = torch.cat( | |
[ | |
predict_relative_buckets[:, :sequence_length, :sequence_length], | |
predict_relative_buckets[ | |
:, :sequence_length, self.max_target_positions : self.max_target_positions + sequence_length | |
], | |
], | |
2, | |
).repeat(batch_size, 1, 1) | |
return main_relative_buckets, predict_relative_buckets | |
def prepare_attention_mask(self, hidden_states, attention_mask): | |
batch_size, seq_length = hidden_states.shape[:2] | |
# get causal mask | |
causal_mask = torch.full( | |
(seq_length, seq_length), | |
torch.finfo(hidden_states.dtype).min, | |
dtype=hidden_states.dtype, | |
device=hidden_states.device, | |
) | |
causal_mask = torch.triu(causal_mask, 1) | |
extended_causal_mask = causal_mask[:seq_length, :seq_length][None, None, :, :].expand( | |
(batch_size, self.config.num_decoder_attention_heads) + causal_mask.shape | |
) | |
# add usual attention mask | |
if attention_mask is not None: | |
extended_attention_mask = (1.0 - attention_mask[:, None, None, :]) * torch.finfo(self.dtype).min | |
extended_attention_mask = extended_causal_mask + extended_attention_mask | |
else: | |
extended_attention_mask = extended_causal_mask | |
return extended_attention_mask.to(hidden_states.dtype) | |
def prepare_predict_attention_mask(self, hidden_states, attention_mask): | |
batch_size, seq_length = hidden_states.shape[:2] | |
# get causal mask | |
predict_causal_mask = ngram_attention_bias( | |
self.max_target_positions, self.ngram, hidden_states.device, hidden_states.dtype | |
) | |
predict_causal_mask = torch.cat( | |
[ | |
predict_causal_mask[:, :seq_length, :seq_length], | |
predict_causal_mask[ | |
:, :seq_length, self.max_target_positions : self.max_target_positions + seq_length | |
], | |
], | |
dim=-1, | |
) | |
extended_predict_causal_mask = predict_causal_mask[None, None, :, :, :].expand( | |
(batch_size, self.config.num_decoder_attention_heads) + predict_causal_mask.shape | |
) | |
# add usual attention mask | |
if attention_mask is not None: | |
extended_attention_mask = (1.0 - attention_mask[:, None, None, None, :]) * torch.finfo(self.dtype).min | |
extended_attention_mask = extended_attention_mask.expand( | |
(batch_size, self.config.num_decoder_attention_heads, self.ngram, seq_length, seq_length) | |
) | |
# predicted stream attention_mask should always be 0 | |
extended_attention_mask = torch.cat( | |
[extended_attention_mask, torch.zeros_like(extended_attention_mask)], dim=-1 | |
) | |
extended_predict_attention_mask = extended_predict_causal_mask + extended_attention_mask | |
else: | |
extended_predict_attention_mask = extended_predict_causal_mask | |
return extended_predict_attention_mask.to(hidden_states.dtype) | |
class ProphetNetModel(ProphetNetPreTrainedModel): | |
_tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight"] | |
def __init__(self, config: ProphetNetConfig): | |
super().__init__(config) | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.is_encoder_decoder = False | |
encoder_config.use_cache = False | |
self.encoder = ProphetNetEncoder(encoder_config, self.word_embeddings) | |
decoder_config = copy.deepcopy(config) | |
decoder_config.is_decoder = True | |
decoder_config.is_encoder_decoder = False | |
self.decoder = ProphetNetDecoder(decoder_config, self.word_embeddings) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.word_embeddings | |
def set_input_embeddings(self, value): | |
self.word_embeddings = value | |
self.encoder.word_embeddings = self.word_embeddings | |
self.decoder.word_embeddings = self.word_embeddings | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.encoder.word_embeddings, self.word_embeddings) | |
self._tie_or_clone_weights(self.decoder.word_embeddings, self.word_embeddings) | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
decoder_input_ids: Optional[torch.Tensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
decoder_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
decoder_inputs_embeds: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, ProphetNetSeq2SeqModelOutput]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, ProphetNetModel | |
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") | |
>>> model = ProphetNetModel.from_pretrained("microsoft/prophetnet-large-uncased") | |
>>> input_ids = tokenizer( | |
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" | |
... ).input_ids # Batch size 1 | |
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 | |
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) | |
>>> last_hidden_states = outputs.last_hidden_state # main stream hidden states | |
>>> last_hidden_states_ngram = outputs.last_hidden_state_ngram # predict hidden states | |
```""" | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
encoder_hidden_states=encoder_outputs[0], | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=decoder_inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
use_cache=use_cache, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return decoder_outputs + encoder_outputs | |
return ProphetNetSeq2SeqModelOutput( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
last_hidden_state_ngram=decoder_outputs.last_hidden_state_ngram, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_ngram_hidden_states=decoder_outputs.hidden_states_ngram, | |
decoder_attentions=decoder_outputs.attentions, | |
decoder_ngram_attentions=decoder_outputs.ngram_attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
class ProphetNetForConditionalGeneration(ProphetNetPreTrainedModel): | |
_tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight", "lm_head.weight"] | |
def __init__(self, config: ProphetNetConfig): | |
super().__init__(config) | |
self.prophetnet = ProphetNetModel(config) | |
self.padding_idx = config.pad_token_id | |
self.disable_ngram_loss = config.disable_ngram_loss | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.prophetnet.word_embeddings, self.lm_head) | |
def get_input_embeddings(self): | |
return self.prophetnet.word_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
decoder_input_ids: Optional[torch.Tensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
decoder_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
decoder_inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, ProphetNetSeq2SeqLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for | |
labels in `[0, ..., config.vocab_size]` | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, ProphetNetForConditionalGeneration | |
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") | |
>>> model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased") | |
>>> input_ids = tokenizer( | |
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" | |
... ).input_ids # Batch size 1 | |
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 | |
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) | |
>>> logits_next_token = outputs.logits # logits to predict next token as usual | |
>>> logits_ngram_next_tokens = outputs.logits_ngram # logits to predict 2nd, 3rd, ... next tokens | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: | |
# get decoder inputs from shifting lm labels to the right | |
decoder_input_ids = self._shift_right(labels) | |
outputs = self.prophetnet( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
head_mask=head_mask, | |
decoder_head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
encoder_outputs=encoder_outputs, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
decoder_inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
batch_size, sequence_length = ( | |
decoder_input_ids.shape if decoder_input_ids is not None else decoder_inputs_embeds.shape[:2] | |
) | |
predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) | |
predict_logits = self.lm_head(predicting_streams) | |
logits = predict_logits[:, 0] | |
logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None | |
# To use .view in loss computation, make sure that logits is contiguous. | |
if not logits.is_contiguous(): | |
logits = logits.contiguous() | |
loss = None | |
if labels is not None: | |
loss = self._compute_loss(predict_logits, labels) | |
if not return_dict: | |
all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) | |
return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] | |
else: | |
return ProphetNetSeq2SeqLMOutput( | |
loss=loss, | |
logits=logits, | |
logits_ngram=logits_ngram, | |
past_key_values=outputs.past_key_values, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_ngram_hidden_states=outputs.decoder_ngram_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
decoder_ngram_attentions=outputs.decoder_ngram_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
) | |
def _compute_loss(self, logits, labels, ignore_index=-100): | |
expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) | |
for i in range(self.config.ngram): | |
if i > 0 and self.disable_ngram_loss: | |
break | |
expend_targets[i, :, :] = labels | |
logits = logits.transpose(0, 1).contiguous() | |
lprobs = nn.functional.log_softmax( | |
logits.view(-1, logits.size(-1)), | |
dim=-1, | |
dtype=torch.float32, | |
) | |
loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") | |
if self.config.eps > 0.0: | |
smooth_loss = -lprobs.sum(dim=-1, keepdim=True) | |
non_masked_tokens = expend_targets.ne(ignore_index).view(-1) | |
smooth_loss = smooth_loss[non_masked_tokens] | |
smooth_loss = smooth_loss.mean() | |
eps_i = self.config.eps / lprobs.size(-1) | |
loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss | |
return loss | |
def prepare_inputs_for_generation( | |
self, | |
decoder_input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
use_cache=None, | |
encoder_outputs=None, | |
**kwargs, | |
): | |
assert encoder_outputs is not None, "`encoder_outputs` have to be passed for generation." | |
if past_key_values: | |
decoder_input_ids = decoder_input_ids[:, -1:] | |
# first step, decoder_cached_states are empty | |
return { | |
"input_ids": None, # encoder_outputs is defined. input_ids not needed | |
"encoder_outputs": encoder_outputs, | |
"past_key_values": past_key_values, | |
"decoder_input_ids": decoder_input_ids, | |
"attention_mask": attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
"use_cache": use_cache, | |
} | |
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
return self._shift_right(labels) | |
# Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration._reorder_cache | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
# cached cross_attention states don't have to be reordered -> they are always the same | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) | |
+ layer_past[2:], | |
) | |
return reordered_past | |
def get_encoder(self): | |
return self.prophetnet.encoder | |
def get_decoder(self): | |
return self.prophetnet.decoder | |
class ProphetNetForCausalLM(ProphetNetPreTrainedModel): | |
_tied_weights_keys = [ | |
"prophetnet.word_embeddings.weight", | |
"prophetnet.decoder.word_embeddings.weight", | |
"lm_head.weight", | |
] | |
def __init__(self, config: ProphetNetConfig): | |
# set config for CLM | |
config = copy.deepcopy(config) | |
config.is_decoder = True | |
config.is_encoder_decoder = False | |
super().__init__(config) | |
self.prophetnet = ProphetNetDecoderWrapper(config) | |
self.padding_idx = config.pad_token_id | |
self.disable_ngram_loss = config.disable_ngram_loss | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.prophetnet.decoder.word_embeddings | |
def set_input_embeddings(self, value): | |
self.prophetnet.decoder.word_embeddings = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.prophetnet.decoder.word_embeddings, self.lm_head) | |
def set_decoder(self, decoder): | |
self.prophetnet.decoder = decoder | |
def get_decoder(self): | |
return self.prophetnet.decoder | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, ProphetNetDecoderLMOutput]: | |
r""" | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
the model is configured as a decoder. | |
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in | |
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are | |
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, ProphetNetForCausalLM | |
>>> import torch | |
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") | |
>>> model = ProphetNetForCausalLM.from_pretrained("microsoft/prophetnet-large-uncased") | |
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> logits = outputs.logits | |
>>> # Model can also be used with EncoderDecoder framework | |
>>> from transformers import BertTokenizer, EncoderDecoderModel, AutoTokenizer | |
>>> import torch | |
>>> tokenizer_enc = BertTokenizer.from_pretrained("google-bert/bert-large-uncased") | |
>>> tokenizer_dec = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") | |
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained( | |
... "google-bert/bert-large-uncased", "microsoft/prophetnet-large-uncased" | |
... ) | |
>>> ARTICLE = ( | |
... "the us state department said wednesday it had received no " | |
... "formal word from bolivia that it was expelling the us ambassador there " | |
... "but said the charges made against him are `` baseless ." | |
... ) | |
>>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids | |
>>> labels = tokenizer_dec( | |
... "us rejects charges against its ambassador in bolivia", return_tensors="pt" | |
... ).input_ids | |
>>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:]) | |
>>> loss = outputs.loss | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) | |
outputs = self.prophetnet.decoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
head_mask=head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
batch_size, sequence_length = input_ids.shape if input_ids is not None else inputs_embeds.shape[:2] | |
predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) | |
predict_logits = self.lm_head(predicting_streams) | |
logits = predict_logits[:, 0] | |
logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None | |
loss = None | |
if labels is not None: | |
loss = self._compute_loss(predict_logits, labels) | |
if not return_dict: | |
all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) | |
return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] | |
else: | |
return ProphetNetDecoderLMOutput( | |
loss=loss, | |
logits=logits, | |
logits_ngram=logits_ngram, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
hidden_states_ngram=outputs.hidden_states_ngram, | |
attentions=outputs.attentions, | |
ngram_attentions=outputs.ngram_attentions, | |
cross_attentions=outputs.cross_attentions, | |
) | |
def _compute_loss(self, logits, labels, ignore_index=-100): | |
expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) | |
for i in range(self.config.ngram): | |
if i > 0 and self.disable_ngram_loss: | |
break | |
expend_targets[i, :, :] = labels | |
logits = logits.transpose(0, 1).contiguous() | |
lprobs = nn.functional.log_softmax( | |
logits.view(-1, logits.size(-1)), | |
dim=-1, | |
dtype=torch.float32, | |
) | |
loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") | |
if self.config.eps > 0.0: | |
smooth_loss = -lprobs.sum(dim=-1, keepdim=True) | |
non_masked_tokens = expend_targets.ne(ignore_index).view(-1) | |
smooth_loss = smooth_loss[non_masked_tokens] | |
smooth_loss = smooth_loss.mean() | |
eps_i = self.config.eps / lprobs.size(-1) | |
loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss | |
return loss | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
head_mask=None, | |
use_cache=None, | |
**kwargs, | |
): | |
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly | |
if attention_mask is None: | |
attention_mask = input_ids.new_ones(input_ids.shape) | |
if past_key_values: | |
input_ids = input_ids[:, -1:] | |
# first step, decoder_cached_states are empty | |
return { | |
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed | |
"attention_mask": attention_mask, | |
"head_mask": head_mask, | |
"past_key_values": past_key_values, | |
"use_cache": use_cache, | |
} | |
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM._reorder_cache | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
) | |
return reordered_past | |
class ProphetNetDecoderWrapper(ProphetNetPreTrainedModel): | |
""" | |
This is a wrapper class, so that [`ProphetNetForCausalLM`] can correctly be loaded from pretrained prophetnet | |
classes. | |
""" | |
def __init__(self, config: ProphetNetConfig): | |
super().__init__(config) | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.decoder = ProphetNetDecoder(config, word_embeddings=self.word_embeddings) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def _tie_weights(self): | |
self._tie_or_clone_weights(self.word_embeddings, self.decoder.get_input_embeddings()) | |
def forward(self, *args, **kwargs): | |
return self.decoder(*args, **kwargs) | |