Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/pvt
/configuration_pvt.py
# coding=utf-8 | |
# Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, | |
# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team. | |
# All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Pvt model configuration""" | |
from collections import OrderedDict | |
from typing import Callable, List, Mapping | |
from packaging import version | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class PvtConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`PvtModel`]. It is used to instantiate an Pvt | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the Pvt | |
[Xrenya/pvt-tiny-224](https://huggingface.co/Xrenya/pvt-tiny-224) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
image_size (`int`, *optional*, defaults to 224): | |
The input image size | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
num_encoder_blocks (`int`, *optional*, defaults to 4): | |
The number of encoder blocks (i.e. stages in the Mix Transformer encoder). | |
depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`): | |
The number of layers in each encoder block. | |
sequence_reduction_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`): | |
Sequence reduction ratios in each encoder block. | |
hidden_sizes (`List[int]`, *optional*, defaults to `[64, 128, 320, 512]`): | |
Dimension of each of the encoder blocks. | |
patch_sizes (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`): | |
Patch size before each encoder block. | |
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`): | |
Stride before each encoder block. | |
num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`): | |
Number of attention heads for each attention layer in each block of the Transformer encoder. | |
mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`): | |
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the | |
encoder blocks. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
drop_path_rate (`float`, *optional*, defaults to 0.0): | |
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the layer normalization layers. | |
qkv_bias (`bool`, *optional*, defaults to `True`): | |
Whether or not a learnable bias should be added to the queries, keys and values. | |
num_labels ('int', *optional*, defaults to 1000): | |
The number of classes. | |
Example: | |
```python | |
>>> from transformers import PvtModel, PvtConfig | |
>>> # Initializing a PVT Xrenya/pvt-tiny-224 style configuration | |
>>> configuration = PvtConfig() | |
>>> # Initializing a model from the Xrenya/pvt-tiny-224 style configuration | |
>>> model = PvtModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "pvt" | |
def __init__( | |
self, | |
image_size: int = 224, | |
num_channels: int = 3, | |
num_encoder_blocks: int = 4, | |
depths: List[int] = [2, 2, 2, 2], | |
sequence_reduction_ratios: List[int] = [8, 4, 2, 1], | |
hidden_sizes: List[int] = [64, 128, 320, 512], | |
patch_sizes: List[int] = [4, 2, 2, 2], | |
strides: List[int] = [4, 2, 2, 2], | |
num_attention_heads: List[int] = [1, 2, 5, 8], | |
mlp_ratios: List[int] = [8, 8, 4, 4], | |
hidden_act: Mapping[str, Callable] = "gelu", | |
hidden_dropout_prob: float = 0.0, | |
attention_probs_dropout_prob: float = 0.0, | |
initializer_range: float = 0.02, | |
drop_path_rate: float = 0.0, | |
layer_norm_eps: float = 1e-6, | |
qkv_bias: bool = True, | |
num_labels: int = 1000, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.image_size = image_size | |
self.num_channels = num_channels | |
self.num_encoder_blocks = num_encoder_blocks | |
self.depths = depths | |
self.sequence_reduction_ratios = sequence_reduction_ratios | |
self.hidden_sizes = hidden_sizes | |
self.patch_sizes = patch_sizes | |
self.strides = strides | |
self.mlp_ratios = mlp_ratios | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.drop_path_rate = drop_path_rate | |
self.layer_norm_eps = layer_norm_eps | |
self.num_labels = num_labels | |
self.qkv_bias = qkv_bias | |
class PvtOnnxConfig(OnnxConfig): | |
torch_onnx_minimum_version = version.parse("1.11") | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
return OrderedDict( | |
[ | |
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), | |
] | |
) | |
def atol_for_validation(self) -> float: | |
return 1e-4 | |
def default_onnx_opset(self) -> int: | |
return 12 | |