Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/pvt
/modeling_pvt.py
# coding=utf-8 | |
# Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, | |
# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team. | |
# All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch PVT model.""" | |
import collections | |
import math | |
from typing import Iterable, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
) | |
from .configuration_pvt import PvtConfig | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "PvtConfig" | |
_CHECKPOINT_FOR_DOC = "Zetatech/pvt-tiny-224" | |
_EXPECTED_OUTPUT_SHAPE = [1, 50, 512] | |
_IMAGE_CLASS_CHECKPOINT = "Zetatech/pvt-tiny-224" | |
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" | |
# Copied from transformers.models.beit.modeling_beit.drop_path | |
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: | |
""" | |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, | |
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the | |
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the | |
argument. | |
""" | |
if drop_prob == 0.0 or not training: | |
return input | |
keep_prob = 1 - drop_prob | |
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) | |
random_tensor.floor_() # binarize | |
output = input.div(keep_prob) * random_tensor | |
return output | |
# Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Pvt | |
class PvtDropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob: Optional[float] = None) -> None: | |
super().__init__() | |
self.drop_prob = drop_prob | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
return drop_path(hidden_states, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return "p={}".format(self.drop_prob) | |
class PvtPatchEmbeddings(nn.Module): | |
""" | |
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial | |
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a | |
Transformer. | |
""" | |
def __init__( | |
self, | |
config: PvtConfig, | |
image_size: Union[int, Iterable[int]], | |
patch_size: Union[int, Iterable[int]], | |
stride: int, | |
num_channels: int, | |
hidden_size: int, | |
cls_token: bool = False, | |
): | |
super().__init__() | |
self.config = config | |
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) | |
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.num_patches = num_patches | |
self.position_embeddings = nn.Parameter( | |
torch.randn(1, num_patches + 1 if cls_token else num_patches, hidden_size) | |
) | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size)) if cls_token else None | |
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=stride, stride=patch_size) | |
self.layer_norm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(p=config.hidden_dropout_prob) | |
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: | |
num_patches = height * width | |
if num_patches == self.config.image_size * self.config.image_size: | |
return self.position_embeddings | |
embeddings = embeddings.reshape(1, height, width, -1).permute(0, 3, 1, 2) | |
interpolated_embeddings = F.interpolate(embeddings, size=(height, width), mode="bilinear") | |
interpolated_embeddings = interpolated_embeddings.reshape(1, -1, height * width).permute(0, 2, 1) | |
return interpolated_embeddings | |
def forward(self, pixel_values: torch.Tensor) -> Tuple[torch.Tensor, int, int]: | |
batch_size, num_channels, height, width = pixel_values.shape | |
if num_channels != self.num_channels: | |
raise ValueError( | |
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." | |
) | |
patch_embed = self.projection(pixel_values) | |
*_, height, width = patch_embed.shape | |
patch_embed = patch_embed.flatten(2).transpose(1, 2) | |
embeddings = self.layer_norm(patch_embed) | |
if self.cls_token is not None: | |
cls_token = self.cls_token.expand(batch_size, -1, -1) | |
embeddings = torch.cat((cls_token, embeddings), dim=1) | |
position_embeddings = self.interpolate_pos_encoding(self.position_embeddings[:, 1:], height, width) | |
position_embeddings = torch.cat((self.position_embeddings[:, :1], position_embeddings), dim=1) | |
else: | |
position_embeddings = self.interpolate_pos_encoding(self.position_embeddings, height, width) | |
embeddings = self.dropout(embeddings + position_embeddings) | |
return embeddings, height, width | |
class PvtSelfOutput(nn.Module): | |
def __init__(self, config: PvtConfig, hidden_size: int): | |
super().__init__() | |
self.dense = nn.Linear(hidden_size, hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
class PvtEfficientSelfAttention(nn.Module): | |
"""Efficient self-attention mechanism with reduction of the sequence [PvT paper](https://arxiv.org/abs/2102.12122).""" | |
def __init__( | |
self, config: PvtConfig, hidden_size: int, num_attention_heads: int, sequences_reduction_ratio: float | |
): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.num_attention_heads = num_attention_heads | |
if self.hidden_size % self.num_attention_heads != 0: | |
raise ValueError( | |
f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({self.num_attention_heads})" | |
) | |
self.attention_head_size = int(self.hidden_size / self.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.sequences_reduction_ratio = sequences_reduction_ratio | |
if sequences_reduction_ratio > 1: | |
self.sequence_reduction = nn.Conv2d( | |
hidden_size, hidden_size, kernel_size=sequences_reduction_ratio, stride=sequences_reduction_ratio | |
) | |
self.layer_norm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) | |
def transpose_for_scores(self, hidden_states: int) -> torch.Tensor: | |
new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
hidden_states = hidden_states.view(new_shape) | |
return hidden_states.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
height: int, | |
width: int, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor]: | |
query_layer = self.transpose_for_scores(self.query(hidden_states)) | |
if self.sequences_reduction_ratio > 1: | |
batch_size, seq_len, num_channels = hidden_states.shape | |
# Reshape to (batch_size, num_channels, height, width) | |
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) | |
# Apply sequence reduction | |
hidden_states = self.sequence_reduction(hidden_states) | |
# Reshape back to (batch_size, seq_len, num_channels) | |
hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1) | |
hidden_states = self.layer_norm(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
class PvtAttention(nn.Module): | |
def __init__( | |
self, config: PvtConfig, hidden_size: int, num_attention_heads: int, sequences_reduction_ratio: float | |
): | |
super().__init__() | |
self.self = PvtEfficientSelfAttention( | |
config, | |
hidden_size=hidden_size, | |
num_attention_heads=num_attention_heads, | |
sequences_reduction_ratio=sequences_reduction_ratio, | |
) | |
self.output = PvtSelfOutput(config, hidden_size=hidden_size) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False | |
) -> Tuple[torch.Tensor]: | |
self_outputs = self.self(hidden_states, height, width, output_attentions) | |
attention_output = self.output(self_outputs[0]) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class PvtFFN(nn.Module): | |
def __init__( | |
self, | |
config: PvtConfig, | |
in_features: int, | |
hidden_features: Optional[int] = None, | |
out_features: Optional[int] = None, | |
): | |
super().__init__() | |
out_features = out_features if out_features is not None else in_features | |
self.dense1 = nn.Linear(in_features, hidden_features) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
self.dense2 = nn.Linear(hidden_features, out_features) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense1(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.dense2(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
class PvtLayer(nn.Module): | |
def __init__( | |
self, | |
config: PvtConfig, | |
hidden_size: int, | |
num_attention_heads: int, | |
drop_path: float, | |
sequences_reduction_ratio: float, | |
mlp_ratio: float, | |
): | |
super().__init__() | |
self.layer_norm_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) | |
self.attention = PvtAttention( | |
config=config, | |
hidden_size=hidden_size, | |
num_attention_heads=num_attention_heads, | |
sequences_reduction_ratio=sequences_reduction_ratio, | |
) | |
self.drop_path = PvtDropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.layer_norm_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) | |
mlp_hidden_size = int(hidden_size * mlp_ratio) | |
self.mlp = PvtFFN(config=config, in_features=hidden_size, hidden_features=mlp_hidden_size) | |
def forward(self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False): | |
self_attention_outputs = self.attention( | |
hidden_states=self.layer_norm_1(hidden_states), | |
height=height, | |
width=width, | |
output_attentions=output_attentions, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] | |
attention_output = self.drop_path(attention_output) | |
hidden_states = attention_output + hidden_states | |
mlp_output = self.mlp(self.layer_norm_2(hidden_states)) | |
mlp_output = self.drop_path(mlp_output) | |
layer_output = hidden_states + mlp_output | |
outputs = (layer_output,) + outputs | |
return outputs | |
class PvtEncoder(nn.Module): | |
def __init__(self, config: PvtConfig): | |
super().__init__() | |
self.config = config | |
# stochastic depth decay rule | |
drop_path_decays = torch.linspace(0, config.drop_path_rate, sum(config.depths)).tolist() | |
# patch embeddings | |
embeddings = [] | |
for i in range(config.num_encoder_blocks): | |
embeddings.append( | |
PvtPatchEmbeddings( | |
config=config, | |
image_size=config.image_size if i == 0 else self.config.image_size // (2 ** (i + 1)), | |
patch_size=config.patch_sizes[i], | |
stride=config.strides[i], | |
num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], | |
hidden_size=config.hidden_sizes[i], | |
cls_token=i == config.num_encoder_blocks - 1, | |
) | |
) | |
self.patch_embeddings = nn.ModuleList(embeddings) | |
# Transformer blocks | |
blocks = [] | |
cur = 0 | |
for i in range(config.num_encoder_blocks): | |
# each block consists of layers | |
layers = [] | |
if i != 0: | |
cur += config.depths[i - 1] | |
for j in range(config.depths[i]): | |
layers.append( | |
PvtLayer( | |
config=config, | |
hidden_size=config.hidden_sizes[i], | |
num_attention_heads=config.num_attention_heads[i], | |
drop_path=drop_path_decays[cur + j], | |
sequences_reduction_ratio=config.sequence_reduction_ratios[i], | |
mlp_ratio=config.mlp_ratios[i], | |
) | |
) | |
blocks.append(nn.ModuleList(layers)) | |
self.block = nn.ModuleList(blocks) | |
# Layer norms | |
self.layer_norm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps) | |
def forward( | |
self, | |
pixel_values: torch.FloatTensor, | |
output_attentions: Optional[bool] = False, | |
output_hidden_states: Optional[bool] = False, | |
return_dict: Optional[bool] = True, | |
) -> Union[Tuple, BaseModelOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
batch_size = pixel_values.shape[0] | |
num_blocks = len(self.block) | |
hidden_states = pixel_values | |
for idx, (embedding_layer, block_layer) in enumerate(zip(self.patch_embeddings, self.block)): | |
# first, obtain patch embeddings | |
hidden_states, height, width = embedding_layer(hidden_states) | |
# second, send embeddings through blocks | |
for block in block_layer: | |
layer_outputs = block(hidden_states, height, width, output_attentions) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if idx != num_blocks - 1: | |
hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous() | |
hidden_states = self.layer_norm(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class PvtPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = PvtConfig | |
base_model_prefix = "pvt" | |
main_input_name = "pixel_values" | |
_no_split_modules = [] | |
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid | |
# `trunc_normal_cpu` not implemented in `half` issues | |
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, PvtPatchEmbeddings): | |
module.position_embeddings.data = nn.init.trunc_normal_( | |
module.position_embeddings.data, | |
mean=0.0, | |
std=self.config.initializer_range, | |
) | |
if module.cls_token is not None: | |
module.cls_token.data = nn.init.trunc_normal_( | |
module.cls_token.data, | |
mean=0.0, | |
std=self.config.initializer_range, | |
) | |
PVT_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`~PvtConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
PVT_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PvtImageProcessor.__call__`] | |
for details. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class PvtModel(PvtPreTrainedModel): | |
def __init__(self, config: PvtConfig): | |
super().__init__(config) | |
self.config = config | |
# hierarchical Transformer encoder | |
self.encoder = PvtEncoder(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
pixel_values: torch.FloatTensor, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_outputs = self.encoder( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
if not return_dict: | |
return (sequence_output,) + encoder_outputs[1:] | |
return BaseModelOutput( | |
last_hidden_state=sequence_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class PvtForImageClassification(PvtPreTrainedModel): | |
def __init__(self, config: PvtConfig) -> None: | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.pvt = PvtModel(config) | |
# Classifier head | |
self.classifier = ( | |
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() | |
) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor], | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, ImageClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.pvt( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifier(sequence_output[:, 0, :]) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return ImageClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |