Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/rag
/tokenization_rag.py
# coding=utf-8 | |
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for RAG.""" | |
import os | |
import warnings | |
from typing import List, Optional | |
from ...tokenization_utils_base import BatchEncoding | |
from ...utils import logging | |
from .configuration_rag import RagConfig | |
logger = logging.get_logger(__name__) | |
class RagTokenizer: | |
def __init__(self, question_encoder, generator): | |
self.question_encoder = question_encoder | |
self.generator = generator | |
self.current_tokenizer = self.question_encoder | |
def save_pretrained(self, save_directory): | |
if os.path.isfile(save_directory): | |
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") | |
os.makedirs(save_directory, exist_ok=True) | |
question_encoder_path = os.path.join(save_directory, "question_encoder_tokenizer") | |
generator_path = os.path.join(save_directory, "generator_tokenizer") | |
self.question_encoder.save_pretrained(question_encoder_path) | |
self.generator.save_pretrained(generator_path) | |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | |
# dynamically import AutoTokenizer | |
from ..auto.tokenization_auto import AutoTokenizer | |
config = kwargs.pop("config", None) | |
if config is None: | |
config = RagConfig.from_pretrained(pretrained_model_name_or_path) | |
question_encoder = AutoTokenizer.from_pretrained( | |
pretrained_model_name_or_path, config=config.question_encoder, subfolder="question_encoder_tokenizer" | |
) | |
generator = AutoTokenizer.from_pretrained( | |
pretrained_model_name_or_path, config=config.generator, subfolder="generator_tokenizer" | |
) | |
return cls(question_encoder=question_encoder, generator=generator) | |
def __call__(self, *args, **kwargs): | |
return self.current_tokenizer(*args, **kwargs) | |
def batch_decode(self, *args, **kwargs): | |
return self.generator.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
return self.generator.decode(*args, **kwargs) | |
def _switch_to_input_mode(self): | |
self.current_tokenizer = self.question_encoder | |
def _switch_to_target_mode(self): | |
self.current_tokenizer = self.generator | |
def prepare_seq2seq_batch( | |
self, | |
src_texts: List[str], | |
tgt_texts: Optional[List[str]] = None, | |
max_length: Optional[int] = None, | |
max_target_length: Optional[int] = None, | |
padding: str = "longest", | |
return_tensors: str = None, | |
truncation: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
warnings.warn( | |
"`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " | |
"regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " | |
"context manager to prepare your targets. See the documentation of your specific tokenizer for more " | |
"details", | |
FutureWarning, | |
) | |
if max_length is None: | |
max_length = self.current_tokenizer.model_max_length | |
model_inputs = self( | |
src_texts, | |
add_special_tokens=True, | |
return_tensors=return_tensors, | |
max_length=max_length, | |
padding=padding, | |
truncation=truncation, | |
**kwargs, | |
) | |
if tgt_texts is None: | |
return model_inputs | |
# Process tgt_texts | |
if max_target_length is None: | |
max_target_length = self.current_tokenizer.model_max_length | |
labels = self( | |
text_target=tgt_texts, | |
add_special_tokens=True, | |
return_tensors=return_tensors, | |
padding=padding, | |
max_length=max_target_length, | |
truncation=truncation, | |
**kwargs, | |
) | |
model_inputs["labels"] = labels["input_ids"] | |
return model_inputs | |