Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/regnet
/configuration_regnet.py
# coding=utf-8 | |
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""RegNet model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class RegNetConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`RegNetModel`]. It is used to instantiate a RegNet | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the RegNet | |
[facebook/regnet-y-040](https://huggingface.co/facebook/regnet-y-040) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
embedding_size (`int`, *optional*, defaults to 64): | |
Dimensionality (hidden size) for the embedding layer. | |
hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`): | |
Dimensionality (hidden size) at each stage. | |
depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`): | |
Depth (number of layers) for each stage. | |
layer_type (`str`, *optional*, defaults to `"y"`): | |
The layer to use, it can be either `"x" or `"y"`. An `x` layer is a ResNet's BottleNeck layer with | |
`reduction` fixed to `1`. While a `y` layer is a `x` but with squeeze and excitation. Please refer to the | |
paper for a detailed explanation of how these layers were constructed. | |
hidden_act (`str`, *optional*, defaults to `"relu"`): | |
The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` | |
are supported. | |
downsample_in_first_stage (`bool`, *optional*, defaults to `False`): | |
If `True`, the first stage will downsample the inputs using a `stride` of 2. | |
Example: | |
```python | |
>>> from transformers import RegNetConfig, RegNetModel | |
>>> # Initializing a RegNet regnet-y-40 style configuration | |
>>> configuration = RegNetConfig() | |
>>> # Initializing a model from the regnet-y-40 style configuration | |
>>> model = RegNetModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
``` | |
""" | |
model_type = "regnet" | |
layer_types = ["x", "y"] | |
def __init__( | |
self, | |
num_channels=3, | |
embedding_size=32, | |
hidden_sizes=[128, 192, 512, 1088], | |
depths=[2, 6, 12, 2], | |
groups_width=64, | |
layer_type="y", | |
hidden_act="relu", | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
if layer_type not in self.layer_types: | |
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}") | |
self.num_channels = num_channels | |
self.embedding_size = embedding_size | |
self.hidden_sizes = hidden_sizes | |
self.depths = depths | |
self.groups_width = groups_width | |
self.layer_type = layer_type | |
self.hidden_act = hidden_act | |
# always downsample in the first stage | |
self.downsample_in_first_stage = True | |