Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/regnet
/modeling_regnet.py
# coding=utf-8 | |
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch RegNet model.""" | |
import math | |
from typing import Optional | |
import torch | |
import torch.utils.checkpoint | |
from torch import Tensor, nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward | |
from ...modeling_outputs import ( | |
BaseModelOutputWithNoAttention, | |
BaseModelOutputWithPoolingAndNoAttention, | |
ImageClassifierOutputWithNoAttention, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import logging | |
from .configuration_regnet import RegNetConfig | |
logger = logging.get_logger(__name__) | |
# General docstring | |
_CONFIG_FOR_DOC = "RegNetConfig" | |
# Base docstring | |
_CHECKPOINT_FOR_DOC = "facebook/regnet-y-040" | |
_EXPECTED_OUTPUT_SHAPE = [1, 1088, 7, 7] | |
# Image classification docstring | |
_IMAGE_CLASS_CHECKPOINT = "facebook/regnet-y-040" | |
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" | |
class RegNetConvLayer(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int = 3, | |
stride: int = 1, | |
groups: int = 1, | |
activation: Optional[str] = "relu", | |
): | |
super().__init__() | |
self.convolution = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=kernel_size // 2, | |
groups=groups, | |
bias=False, | |
) | |
self.normalization = nn.BatchNorm2d(out_channels) | |
self.activation = ACT2FN[activation] if activation is not None else nn.Identity() | |
def forward(self, hidden_state): | |
hidden_state = self.convolution(hidden_state) | |
hidden_state = self.normalization(hidden_state) | |
hidden_state = self.activation(hidden_state) | |
return hidden_state | |
class RegNetEmbeddings(nn.Module): | |
""" | |
RegNet Embedddings (stem) composed of a single aggressive convolution. | |
""" | |
def __init__(self, config: RegNetConfig): | |
super().__init__() | |
self.embedder = RegNetConvLayer( | |
config.num_channels, config.embedding_size, kernel_size=3, stride=2, activation=config.hidden_act | |
) | |
self.num_channels = config.num_channels | |
def forward(self, pixel_values): | |
num_channels = pixel_values.shape[1] | |
if num_channels != self.num_channels: | |
raise ValueError( | |
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." | |
) | |
hidden_state = self.embedder(pixel_values) | |
return hidden_state | |
# Copied from transformers.models.resnet.modeling_resnet.ResNetShortCut with ResNet->RegNet | |
class RegNetShortCut(nn.Module): | |
""" | |
RegNet shortcut, used to project the residual features to the correct size. If needed, it is also used to | |
downsample the input using `stride=2`. | |
""" | |
def __init__(self, in_channels: int, out_channels: int, stride: int = 2): | |
super().__init__() | |
self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False) | |
self.normalization = nn.BatchNorm2d(out_channels) | |
def forward(self, input: Tensor) -> Tensor: | |
hidden_state = self.convolution(input) | |
hidden_state = self.normalization(hidden_state) | |
return hidden_state | |
class RegNetSELayer(nn.Module): | |
""" | |
Squeeze and Excitation layer (SE) proposed in [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507). | |
""" | |
def __init__(self, in_channels: int, reduced_channels: int): | |
super().__init__() | |
self.pooler = nn.AdaptiveAvgPool2d((1, 1)) | |
self.attention = nn.Sequential( | |
nn.Conv2d(in_channels, reduced_channels, kernel_size=1), | |
nn.ReLU(), | |
nn.Conv2d(reduced_channels, in_channels, kernel_size=1), | |
nn.Sigmoid(), | |
) | |
def forward(self, hidden_state): | |
# b c h w -> b c 1 1 | |
pooled = self.pooler(hidden_state) | |
attention = self.attention(pooled) | |
hidden_state = hidden_state * attention | |
return hidden_state | |
class RegNetXLayer(nn.Module): | |
""" | |
RegNet's layer composed by three `3x3` convolutions, same as a ResNet bottleneck layer with reduction = 1. | |
""" | |
def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1): | |
super().__init__() | |
should_apply_shortcut = in_channels != out_channels or stride != 1 | |
groups = max(1, out_channels // config.groups_width) | |
self.shortcut = ( | |
RegNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity() | |
) | |
self.layer = nn.Sequential( | |
RegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act), | |
RegNetConvLayer(out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act), | |
RegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None), | |
) | |
self.activation = ACT2FN[config.hidden_act] | |
def forward(self, hidden_state): | |
residual = hidden_state | |
hidden_state = self.layer(hidden_state) | |
residual = self.shortcut(residual) | |
hidden_state += residual | |
hidden_state = self.activation(hidden_state) | |
return hidden_state | |
class RegNetYLayer(nn.Module): | |
""" | |
RegNet's Y layer: an X layer with Squeeze and Excitation. | |
""" | |
def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1): | |
super().__init__() | |
should_apply_shortcut = in_channels != out_channels or stride != 1 | |
groups = max(1, out_channels // config.groups_width) | |
self.shortcut = ( | |
RegNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity() | |
) | |
self.layer = nn.Sequential( | |
RegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act), | |
RegNetConvLayer(out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act), | |
RegNetSELayer(out_channels, reduced_channels=int(round(in_channels / 4))), | |
RegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None), | |
) | |
self.activation = ACT2FN[config.hidden_act] | |
def forward(self, hidden_state): | |
residual = hidden_state | |
hidden_state = self.layer(hidden_state) | |
residual = self.shortcut(residual) | |
hidden_state += residual | |
hidden_state = self.activation(hidden_state) | |
return hidden_state | |
class RegNetStage(nn.Module): | |
""" | |
A RegNet stage composed by stacked layers. | |
""" | |
def __init__( | |
self, | |
config: RegNetConfig, | |
in_channels: int, | |
out_channels: int, | |
stride: int = 2, | |
depth: int = 2, | |
): | |
super().__init__() | |
layer = RegNetXLayer if config.layer_type == "x" else RegNetYLayer | |
self.layers = nn.Sequential( | |
# downsampling is done in the first layer with stride of 2 | |
layer( | |
config, | |
in_channels, | |
out_channels, | |
stride=stride, | |
), | |
*[layer(config, out_channels, out_channels) for _ in range(depth - 1)], | |
) | |
def forward(self, hidden_state): | |
hidden_state = self.layers(hidden_state) | |
return hidden_state | |
class RegNetEncoder(nn.Module): | |
def __init__(self, config: RegNetConfig): | |
super().__init__() | |
self.stages = nn.ModuleList([]) | |
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input | |
self.stages.append( | |
RegNetStage( | |
config, | |
config.embedding_size, | |
config.hidden_sizes[0], | |
stride=2 if config.downsample_in_first_stage else 1, | |
depth=config.depths[0], | |
) | |
) | |
in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:]) | |
for (in_channels, out_channels), depth in zip(in_out_channels, config.depths[1:]): | |
self.stages.append(RegNetStage(config, in_channels, out_channels, depth=depth)) | |
def forward( | |
self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True | |
) -> BaseModelOutputWithNoAttention: | |
hidden_states = () if output_hidden_states else None | |
for stage_module in self.stages: | |
if output_hidden_states: | |
hidden_states = hidden_states + (hidden_state,) | |
hidden_state = stage_module(hidden_state) | |
if output_hidden_states: | |
hidden_states = hidden_states + (hidden_state,) | |
if not return_dict: | |
return tuple(v for v in [hidden_state, hidden_states] if v is not None) | |
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=hidden_states) | |
class RegNetPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = RegNetConfig | |
base_model_prefix = "regnet" | |
main_input_name = "pixel_values" | |
_no_split_modules = ["RegNetYLayer"] | |
# Copied from transformers.models.resnet.modeling_resnet.ResNetPreTrainedModel._init_weights | |
def _init_weights(self, module): | |
if isinstance(module, nn.Conv2d): | |
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") | |
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`. | |
elif isinstance(module, nn.Linear): | |
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5)) | |
if module.bias is not None: | |
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight) | |
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 | |
nn.init.uniform_(module.bias, -bound, bound) | |
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)): | |
nn.init.constant_(module.weight, 1) | |
nn.init.constant_(module.bias, 0) | |
REGNET_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it | |
as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and | |
behavior. | |
Parameters: | |
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
REGNET_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
[`ConvNextImageProcessor.__call__`] for details. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. | |
""" | |
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet | |
class RegNetModel(RegNetPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.embedder = RegNetEmbeddings(config) | |
self.encoder = RegNetEncoder(config) | |
self.pooler = nn.AdaptiveAvgPool2d((1, 1)) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None | |
) -> BaseModelOutputWithPoolingAndNoAttention: | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
embedding_output = self.embedder(pixel_values) | |
encoder_outputs = self.encoder( | |
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict | |
) | |
last_hidden_state = encoder_outputs[0] | |
pooled_output = self.pooler(last_hidden_state) | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPoolingAndNoAttention( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
) | |
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet | |
class RegNetForImageClassification(RegNetPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.regnet = RegNetModel(config) | |
# classification head | |
self.classifier = nn.Sequential( | |
nn.Flatten(), | |
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(), | |
) | |
# initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> ImageClassifierOutputWithNoAttention: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.regnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) | |
pooled_output = outputs.pooler_output if return_dict else outputs[1] | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return (loss,) + output if loss is not None else output | |
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) | |