Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/rembert
/configuration_rembert.py
# coding=utf-8 | |
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""RemBERT model configuration""" | |
from collections import OrderedDict | |
from typing import Mapping | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class RemBertConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`RemBertModel`]. It is used to instantiate an | |
RemBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the RemBERT | |
[google/rembert](https://huggingface.co/google/rembert) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 250300): | |
Vocabulary size of the RemBERT model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`RemBertModel`] or [`TFRemBertModel`]. Vocabulary size of the model. | |
Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of | |
[`RemBertModel`]. | |
hidden_size (`int`, *optional*, defaults to 1152): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 18): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
input_embedding_size (`int`, *optional*, defaults to 256): | |
Dimensionality of the input embeddings. | |
output_embedding_size (`int`, *optional*, defaults to 1664): | |
Dimensionality of the output embeddings. | |
intermediate_size (`int`, *optional*, defaults to 4608): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0): | |
The dropout ratio for the attention probabilities. | |
classifier_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the classifier layer when fine-tuning. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (`int`, *optional*, defaults to 2): | |
The vocabulary size of the `token_type_ids` passed when calling [`RemBertModel`] or [`TFRemBertModel`]. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
is_decoder (`bool`, *optional*, defaults to `False`): | |
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
Example: | |
```python | |
>>> from transformers import RemBertModel, RemBertConfig | |
>>> # Initializing a RemBERT rembert style configuration | |
>>> configuration = RemBertConfig() | |
>>> # Initializing a model from the rembert style configuration | |
>>> model = RemBertModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "rembert" | |
def __init__( | |
self, | |
vocab_size=250300, | |
hidden_size=1152, | |
num_hidden_layers=32, | |
num_attention_heads=18, | |
input_embedding_size=256, | |
output_embedding_size=1664, | |
intermediate_size=4608, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
classifier_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
use_cache=True, | |
pad_token_id=0, | |
bos_token_id=312, | |
eos_token_id=313, | |
**kwargs, | |
): | |
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.input_embedding_size = input_embedding_size | |
self.output_embedding_size = output_embedding_size | |
self.max_position_embeddings = max_position_embeddings | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.classifier_dropout_prob = classifier_dropout_prob | |
self.initializer_range = initializer_range | |
self.type_vocab_size = type_vocab_size | |
self.layer_norm_eps = layer_norm_eps | |
self.use_cache = use_cache | |
self.tie_word_embeddings = False | |
class RemBertOnnxConfig(OnnxConfig): | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
if self.task == "multiple-choice": | |
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} | |
else: | |
dynamic_axis = {0: "batch", 1: "sequence"} | |
return OrderedDict( | |
[ | |
("input_ids", dynamic_axis), | |
("attention_mask", dynamic_axis), | |
("token_type_ids", dynamic_axis), | |
] | |
) | |
def atol_for_validation(self) -> float: | |
return 1e-4 | |