Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/resnet
/modeling_resnet.py
# coding=utf-8 | |
# Copyright 2022 Microsoft Research, Inc. and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch ResNet model.""" | |
import math | |
from typing import Optional | |
import torch | |
import torch.utils.checkpoint | |
from torch import Tensor, nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BackboneOutput, | |
BaseModelOutputWithNoAttention, | |
BaseModelOutputWithPoolingAndNoAttention, | |
ImageClassifierOutputWithNoAttention, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from ...utils.backbone_utils import BackboneMixin | |
from .configuration_resnet import ResNetConfig | |
logger = logging.get_logger(__name__) | |
# General docstring | |
_CONFIG_FOR_DOC = "ResNetConfig" | |
# Base docstring | |
_CHECKPOINT_FOR_DOC = "microsoft/resnet-50" | |
_EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7] | |
# Image classification docstring | |
_IMAGE_CLASS_CHECKPOINT = "microsoft/resnet-50" | |
_IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat" | |
class ResNetConvLayer(nn.Module): | |
def __init__( | |
self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, activation: str = "relu" | |
): | |
super().__init__() | |
self.convolution = nn.Conv2d( | |
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, bias=False | |
) | |
self.normalization = nn.BatchNorm2d(out_channels) | |
self.activation = ACT2FN[activation] if activation is not None else nn.Identity() | |
def forward(self, input: Tensor) -> Tensor: | |
hidden_state = self.convolution(input) | |
hidden_state = self.normalization(hidden_state) | |
hidden_state = self.activation(hidden_state) | |
return hidden_state | |
class ResNetEmbeddings(nn.Module): | |
""" | |
ResNet Embeddings (stem) composed of a single aggressive convolution. | |
""" | |
def __init__(self, config: ResNetConfig): | |
super().__init__() | |
self.embedder = ResNetConvLayer( | |
config.num_channels, config.embedding_size, kernel_size=7, stride=2, activation=config.hidden_act | |
) | |
self.pooler = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.num_channels = config.num_channels | |
def forward(self, pixel_values: Tensor) -> Tensor: | |
num_channels = pixel_values.shape[1] | |
if num_channels != self.num_channels: | |
raise ValueError( | |
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." | |
) | |
embedding = self.embedder(pixel_values) | |
embedding = self.pooler(embedding) | |
return embedding | |
class ResNetShortCut(nn.Module): | |
""" | |
ResNet shortcut, used to project the residual features to the correct size. If needed, it is also used to | |
downsample the input using `stride=2`. | |
""" | |
def __init__(self, in_channels: int, out_channels: int, stride: int = 2): | |
super().__init__() | |
self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False) | |
self.normalization = nn.BatchNorm2d(out_channels) | |
def forward(self, input: Tensor) -> Tensor: | |
hidden_state = self.convolution(input) | |
hidden_state = self.normalization(hidden_state) | |
return hidden_state | |
class ResNetBasicLayer(nn.Module): | |
""" | |
A classic ResNet's residual layer composed by two `3x3` convolutions. | |
""" | |
def __init__(self, in_channels: int, out_channels: int, stride: int = 1, activation: str = "relu"): | |
super().__init__() | |
should_apply_shortcut = in_channels != out_channels or stride != 1 | |
self.shortcut = ( | |
ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity() | |
) | |
self.layer = nn.Sequential( | |
ResNetConvLayer(in_channels, out_channels, stride=stride), | |
ResNetConvLayer(out_channels, out_channels, activation=None), | |
) | |
self.activation = ACT2FN[activation] | |
def forward(self, hidden_state): | |
residual = hidden_state | |
hidden_state = self.layer(hidden_state) | |
residual = self.shortcut(residual) | |
hidden_state += residual | |
hidden_state = self.activation(hidden_state) | |
return hidden_state | |
class ResNetBottleNeckLayer(nn.Module): | |
""" | |
A classic ResNet's bottleneck layer composed by three `3x3` convolutions. | |
The first `1x1` convolution reduces the input by a factor of `reduction` in order to make the second `3x3` | |
convolution faster. The last `1x1` convolution remaps the reduced features to `out_channels`. If | |
`downsample_in_bottleneck` is true, downsample will be in the first layer instead of the second layer. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
stride: int = 1, | |
activation: str = "relu", | |
reduction: int = 4, | |
downsample_in_bottleneck: bool = False, | |
): | |
super().__init__() | |
should_apply_shortcut = in_channels != out_channels or stride != 1 | |
reduces_channels = out_channels // reduction | |
self.shortcut = ( | |
ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity() | |
) | |
self.layer = nn.Sequential( | |
ResNetConvLayer( | |
in_channels, reduces_channels, kernel_size=1, stride=stride if downsample_in_bottleneck else 1 | |
), | |
ResNetConvLayer(reduces_channels, reduces_channels, stride=stride if not downsample_in_bottleneck else 1), | |
ResNetConvLayer(reduces_channels, out_channels, kernel_size=1, activation=None), | |
) | |
self.activation = ACT2FN[activation] | |
def forward(self, hidden_state): | |
residual = hidden_state | |
hidden_state = self.layer(hidden_state) | |
residual = self.shortcut(residual) | |
hidden_state += residual | |
hidden_state = self.activation(hidden_state) | |
return hidden_state | |
class ResNetStage(nn.Module): | |
""" | |
A ResNet stage composed by stacked layers. | |
""" | |
def __init__( | |
self, | |
config: ResNetConfig, | |
in_channels: int, | |
out_channels: int, | |
stride: int = 2, | |
depth: int = 2, | |
): | |
super().__init__() | |
layer = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer | |
if config.layer_type == "bottleneck": | |
first_layer = layer( | |
in_channels, | |
out_channels, | |
stride=stride, | |
activation=config.hidden_act, | |
downsample_in_bottleneck=config.downsample_in_bottleneck, | |
) | |
else: | |
first_layer = layer(in_channels, out_channels, stride=stride, activation=config.hidden_act) | |
self.layers = nn.Sequential( | |
first_layer, *[layer(out_channels, out_channels, activation=config.hidden_act) for _ in range(depth - 1)] | |
) | |
def forward(self, input: Tensor) -> Tensor: | |
hidden_state = input | |
for layer in self.layers: | |
hidden_state = layer(hidden_state) | |
return hidden_state | |
class ResNetEncoder(nn.Module): | |
def __init__(self, config: ResNetConfig): | |
super().__init__() | |
self.stages = nn.ModuleList([]) | |
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input | |
self.stages.append( | |
ResNetStage( | |
config, | |
config.embedding_size, | |
config.hidden_sizes[0], | |
stride=2 if config.downsample_in_first_stage else 1, | |
depth=config.depths[0], | |
) | |
) | |
in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:]) | |
for (in_channels, out_channels), depth in zip(in_out_channels, config.depths[1:]): | |
self.stages.append(ResNetStage(config, in_channels, out_channels, depth=depth)) | |
def forward( | |
self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True | |
) -> BaseModelOutputWithNoAttention: | |
hidden_states = () if output_hidden_states else None | |
for stage_module in self.stages: | |
if output_hidden_states: | |
hidden_states = hidden_states + (hidden_state,) | |
hidden_state = stage_module(hidden_state) | |
if output_hidden_states: | |
hidden_states = hidden_states + (hidden_state,) | |
if not return_dict: | |
return tuple(v for v in [hidden_state, hidden_states] if v is not None) | |
return BaseModelOutputWithNoAttention( | |
last_hidden_state=hidden_state, | |
hidden_states=hidden_states, | |
) | |
class ResNetPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = ResNetConfig | |
base_model_prefix = "resnet" | |
main_input_name = "pixel_values" | |
_no_split_modules = ["ResNetConvLayer", "ResNetShortCut"] | |
def _init_weights(self, module): | |
if isinstance(module, nn.Conv2d): | |
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") | |
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`. | |
elif isinstance(module, nn.Linear): | |
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5)) | |
if module.bias is not None: | |
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight) | |
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 | |
nn.init.uniform_(module.bias, -bound, bound) | |
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)): | |
nn.init.constant_(module.weight, 1) | |
nn.init.constant_(module.bias, 0) | |
RESNET_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it | |
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
RESNET_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
[`ConvNextImageProcessor.__call__`] for details. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class ResNetModel(ResNetPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.embedder = ResNetEmbeddings(config) | |
self.encoder = ResNetEncoder(config) | |
self.pooler = nn.AdaptiveAvgPool2d((1, 1)) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None | |
) -> BaseModelOutputWithPoolingAndNoAttention: | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
embedding_output = self.embedder(pixel_values) | |
encoder_outputs = self.encoder( | |
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict | |
) | |
last_hidden_state = encoder_outputs[0] | |
pooled_output = self.pooler(last_hidden_state) | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPoolingAndNoAttention( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
) | |
class ResNetForImageClassification(ResNetPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.resnet = ResNetModel(config) | |
# classification head | |
self.classifier = nn.Sequential( | |
nn.Flatten(), | |
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(), | |
) | |
# initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> ImageClassifierOutputWithNoAttention: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.resnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) | |
pooled_output = outputs.pooler_output if return_dict else outputs[1] | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return (loss,) + output if loss is not None else output | |
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) | |
class ResNetBackbone(ResNetPreTrainedModel, BackboneMixin): | |
def __init__(self, config): | |
super().__init__(config) | |
super()._init_backbone(config) | |
self.num_features = [config.embedding_size] + config.hidden_sizes | |
self.embedder = ResNetEmbeddings(config) | |
self.encoder = ResNetEncoder(config) | |
# initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None | |
) -> BackboneOutput: | |
""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoImageProcessor, AutoBackbone | |
>>> import torch | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") | |
>>> model = AutoBackbone.from_pretrained( | |
... "microsoft/resnet-50", out_features=["stage1", "stage2", "stage3", "stage4"] | |
... ) | |
>>> inputs = processor(image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> feature_maps = outputs.feature_maps | |
>>> list(feature_maps[-1].shape) | |
[1, 2048, 7, 7] | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
embedding_output = self.embedder(pixel_values) | |
outputs = self.encoder(embedding_output, output_hidden_states=True, return_dict=True) | |
hidden_states = outputs.hidden_states | |
feature_maps = () | |
for idx, stage in enumerate(self.stage_names): | |
if stage in self.out_features: | |
feature_maps += (hidden_states[idx],) | |
if not return_dict: | |
output = (feature_maps,) | |
if output_hidden_states: | |
output += (outputs.hidden_states,) | |
return output | |
return BackboneOutput( | |
feature_maps=feature_maps, | |
hidden_states=outputs.hidden_states if output_hidden_states else None, | |
attentions=None, | |
) | |