Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/rwkv
/configuration_rwkv.py
# coding=utf-8 | |
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""RWKV configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class RwkvConfig(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a [`RwkvModel`]. It is used to instantiate a RWKV | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the RWVK-4 | |
[RWKV/rwkv-4-169m-pile](https://huggingface.co/RWKV/rwkv-4-169m-pile) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 50277): | |
Vocabulary size of the RWKV model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`RwkvModel`]. | |
context_length (`int`, *optional*, defaults to 1024): | |
The maximum sequence length that this model can be used with in a single forward (using it in RNN mode | |
lets use any sequence length). | |
hidden_size (`int`, *optional*, defaults to 4096): | |
Dimensionality of the embeddings and hidden states. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the model. | |
attention_hidden_size (`int`, *optional*): | |
Dimensionality of the attention hidden states. Will default to `hidden_size` if unset. | |
intermediate_size (`int`, *optional*): | |
Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): | |
The epsilon to use in the layer normalization layers. | |
bos_token_id (`int`, *optional*, defaults to 0): | |
The id of the beginning of sentence token in the vocabulary. Defaults to 0 as RWKV uses the same tokenizer | |
as GPTNeoX. | |
eos_token_id (`int`, *optional*, defaults to 0): | |
The id of the end of sentence token in the vocabulary. Defaults to 0 as RWKV uses the same tokenizer as | |
GPTNeoX. | |
rescale_every (`int`, *optional*, defaults to 6): | |
At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every | |
`rescale_every` layer. If set to 0 or a negative number, no rescale is done. | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether or not to tie the word embeddings with the input token embeddings. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last state. | |
Example: | |
```python | |
>>> from transformers import RwkvConfig, RwkvModel | |
>>> # Initializing a Rwkv configuration | |
>>> configuration = RwkvConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = RwkvModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "rwkv" | |
attribute_map = {"max_position_embeddings": "context_length"} | |
def __init__( | |
self, | |
vocab_size=50277, | |
context_length=1024, | |
hidden_size=4096, | |
num_hidden_layers=32, | |
attention_hidden_size=None, | |
intermediate_size=None, | |
layer_norm_epsilon=1e-5, | |
bos_token_id=0, | |
eos_token_id=0, | |
rescale_every=6, | |
tie_word_embeddings=False, | |
use_cache=True, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.context_length = context_length | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size | |
self.intermediate_size = intermediate_size if intermediate_size is not None else 4 * hidden_size | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.rescale_every = rescale_every | |
self.use_cache = use_cache | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |
super().__init__( | |
tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs | |
) | |