Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/rwkv
/modeling_rwkv.py
# coding=utf-8 | |
# Copyright 2023 Bo Peng and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch RWKV model.""" | |
import math | |
from dataclasses import dataclass | |
from pathlib import Path | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_bitsandbytes_available, | |
is_ninja_available, | |
is_torch_cuda_available, | |
logging, | |
) | |
from .configuration_rwkv import RwkvConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "RWKV/rwkv-4-169m-pile" | |
_CONFIG_FOR_DOC = "RwkvConfig" | |
rwkv_cuda_kernel = None | |
def load_wkv_cuda_kernel(context_length): | |
from torch.utils.cpp_extension import load as load_kernel | |
global rwkv_cuda_kernel | |
kernel_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "rwkv" | |
cuda_kernel_files = [kernel_folder / f for f in ["wkv_op.cpp", "wkv_cuda.cu", "wkv_cuda_bf16.cu"]] | |
# Only load the kernel if it's not been loaded yet or if we changed the context length | |
if rwkv_cuda_kernel is not None and rwkv_cuda_kernel.max_seq_length == context_length: | |
return | |
logger.info(f"Loading CUDA kernel for RWKV at context length of {context_length}.") | |
flags = [ | |
"-res-usage", | |
"--maxrregcount 60", | |
"--use_fast_math", | |
"-O3", | |
"-Xptxas -O3", | |
"--extra-device-vectorization", | |
f"-DTmax={context_length}", | |
] | |
rwkv_cuda_kernel = load_kernel( | |
name=f"wkv_{context_length}", | |
sources=cuda_kernel_files, | |
verbose=(logging.get_verbosity() == logging.DEBUG), | |
extra_cuda_cflags=flags, | |
) | |
rwkv_cuda_kernel.max_seq_length = context_length | |
class RwkvLinearAttention(torch.autograd.Function): | |
def forward(ctx, time_decay, time_first, key, value, state=None, return_state=False): | |
batch_size, seq_len, hidden_size = key.size() | |
if seq_len > rwkv_cuda_kernel.max_seq_length: | |
raise ValueError( | |
f"Cannot process a batch with {seq_len} tokens at the same time, use a maximum of " | |
f"{rwkv_cuda_kernel.max_seq_length} with this model." | |
) | |
if batch_size * hidden_size % min(hidden_size, 32) != 0: | |
raise ValueError( | |
f"The product of batch size ({batch_size}) and hidden size ({hidden_size}) needs to be a round " | |
f"multiple of {min(hidden_size, 32)}." | |
) | |
ctx.input_dtype = key.dtype | |
if ( | |
time_decay.device.type != "cuda" | |
or time_first.device.type != "cuda" | |
or key.device.type != "cuda" | |
or value.device.type != "cuda" | |
): | |
raise ValueError("Calling the CUDA kernel for wkv attention requires all tensors to be on CUDA devices.") | |
time_decay = -torch.exp(time_decay.float().contiguous()) | |
if key.dtype == torch.float16: | |
time_first = time_first.float() | |
key = key.float() | |
value = value.float() | |
time_first = time_first.contiguous() | |
key = key.contiguous() | |
value = value.contiguous() | |
# The CUDA kernel will fill this tensor. | |
output = torch.empty_like(key, memory_format=torch.contiguous_format) | |
if return_state or state is not None: | |
if state is None: | |
state = torch.zeros( | |
batch_size, | |
hidden_size, | |
3, | |
dtype=torch.float32, | |
device=key.device, | |
memory_format=torch.contiguous_format, | |
) | |
state[:, :, 2] -= 1e38 | |
else: | |
state = torch.cat([s.unsqueeze(2) for s in state], dim=2).contiguous() | |
if key.dtype == torch.bfloat16: | |
forward_func = rwkv_cuda_kernel.forward_with_state_bf16 | |
else: | |
forward_func = rwkv_cuda_kernel.forward_with_state | |
forward_func(time_decay, time_first, key, value, output, state) | |
else: | |
forward_func = rwkv_cuda_kernel.forward_bf16 if key.dtype == torch.bfloat16 else rwkv_cuda_kernel.forward | |
forward_func(time_decay, time_first, key, value, output) | |
ctx.save_for_backward(time_decay, time_first, key, value, output) | |
if state is not None: | |
state = [s.squeeze(2) for s in torch.chunk(state, 3, dim=2)] | |
return output.to(ctx.input_dtype), state | |
# g stands for grad | |
def backward(ctx, g_output, g_state=None): | |
input_dtype = ctx.input_dtype | |
time_decay, time_first, key, value, output = ctx.saved_tensors | |
# The CUDA kernel will fill those tensors. | |
g_time_decay = torch.empty_like( | |
time_decay, | |
memory_format=torch.contiguous_format, | |
dtype=torch.bfloat16 if input_dtype == torch.bfloat16 else torch.float32, | |
) | |
g_time_first = torch.empty_like(time_first, memory_format=torch.contiguous_format) | |
g_key = torch.empty_like(key, memory_format=torch.contiguous_format) | |
g_value = torch.empty_like(value, memory_format=torch.contiguous_format) | |
if input_dtype == torch.float16: | |
g_output = g_output.float() | |
backward_func = rwkv_cuda_kernel.backward_bf16 if input_dtype == torch.bfloat16 else rwkv_cuda_kernel.backward | |
backward_func( | |
time_decay, | |
time_first, | |
key, | |
value, | |
output, | |
g_output.contiguous(), | |
g_time_decay, | |
g_time_first, | |
g_key, | |
g_value, | |
) | |
return ( | |
g_time_decay.to(input_dtype), | |
g_time_first.to(input_dtype), | |
g_key.to(input_dtype), | |
g_value.to(input_dtype), | |
None, | |
None, | |
) | |
def rwkv_linear_attention_cpu(time_decay, time_first, key, value, state=None, return_state=False): | |
# For CPU fallback. Will be slower and probably take more memory than the custom CUDA kernel if not executed | |
# within a torch.no_grad. | |
_, seq_length, _ = key.size() | |
output = torch.zeros_like(key) | |
if state is None: | |
num_state = torch.zeros_like(key[:, 0], dtype=torch.float32) | |
den_state = torch.zeros_like(key[:, 0], dtype=torch.float32) | |
max_state = torch.zeros_like(key[:, 0], dtype=torch.float32) - 1e38 | |
else: | |
num_state, den_state, max_state = state | |
# For numerical stability | |
# real_numerator_state = num_state * torch.exp(max_state) | |
# real_denominator_state = den_state * torch.exp(max_state) | |
time_decay = -torch.exp(time_decay) | |
for current_index in range(seq_length): | |
current_key = key[:, current_index].float() | |
current_value = value[:, current_index] | |
# wkv computation at time t | |
max_for_output = torch.maximum(max_state, current_key + time_first) | |
e1 = torch.exp(max_state - max_for_output) | |
e2 = torch.exp(current_key + time_first - max_for_output) | |
numerator = e1 * num_state + e2 * current_value | |
denominator = e1 * den_state + e2 | |
output[:, current_index] = (numerator / denominator).to(output.dtype) | |
# Update state for next iteration | |
max_for_state = torch.maximum(max_state + time_decay, current_key) | |
e1 = torch.exp(max_state + time_decay - max_for_state) | |
e2 = torch.exp(current_key - max_for_state) | |
num_state = e1 * num_state + e2 * current_value | |
den_state = e1 * den_state + e2 | |
max_state = max_for_state | |
if return_state or state is not None: | |
state = [num_state, den_state, max_state] | |
return output, state | |
def rwkv_linear_attention(time_decay, time_first, key, value, state=None, return_state=False): | |
no_cuda = any(t.device.type != "cuda" for t in [time_decay, time_first, key, value]) | |
# Launching the CUDA kernel for just one token will actually be slower (there is no for loop in the CPU version | |
# in this case). | |
one_token = key.size(1) == 1 | |
if rwkv_cuda_kernel is None or no_cuda or one_token: | |
return rwkv_linear_attention_cpu(time_decay, time_first, key, value, state=state, return_state=return_state) | |
else: | |
return RwkvLinearAttention.apply(time_decay, time_first, key, value, state, return_state) | |
class RwkvSelfAttention(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.config = config | |
kernel_loaded = rwkv_cuda_kernel is not None and rwkv_cuda_kernel.max_seq_length == config.context_length | |
if is_ninja_available() and is_torch_cuda_available() and not kernel_loaded: | |
try: | |
load_wkv_cuda_kernel(config.context_length) | |
except Exception: | |
logger.info("Could not load the custom CUDA kernel for RWKV attention.") | |
self.layer_id = layer_id | |
hidden_size = config.hidden_size | |
attention_hidden_size = ( | |
config.attention_hidden_size if config.attention_hidden_size is not None else hidden_size | |
) | |
self.attention_hidden_size = attention_hidden_size | |
self.time_decay = nn.Parameter(torch.empty(attention_hidden_size)) | |
self.time_first = nn.Parameter(torch.empty(attention_hidden_size)) | |
self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size)) | |
self.time_mix_value = nn.Parameter(torch.empty(1, 1, hidden_size)) | |
self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, hidden_size)) | |
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) | |
self.key = nn.Linear(hidden_size, attention_hidden_size, bias=False) | |
self.value = nn.Linear(hidden_size, attention_hidden_size, bias=False) | |
self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False) | |
self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False) | |
# TODO: maybe jit, otherwise move inside forward | |
def extract_key_value(self, hidden, state=None): | |
# Mix hidden with the previous timestep to produce key, value, receptance | |
if hidden.size(1) == 1 and state is not None: | |
shifted = state[1][:, :, self.layer_id] | |
else: | |
shifted = self.time_shift(hidden) | |
if state is not None: | |
shifted[:, 0] = state[1][:, :, self.layer_id] | |
key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key) | |
value = hidden * self.time_mix_value + shifted * (1 - self.time_mix_value) | |
receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance) | |
key = self.key(key) | |
value = self.value(value) | |
receptance = torch.sigmoid(self.receptance(receptance)) | |
if state is not None: | |
state[1][:, :, self.layer_id] = hidden[:, -1] | |
return receptance, key, value, state | |
def forward(self, hidden, state=None, use_cache=False): | |
receptance, key, value, state = self.extract_key_value(hidden, state=state) | |
layer_state = tuple(s[:, :, self.layer_id] for s in state[2:]) if state is not None else None | |
rwkv, layer_state = rwkv_linear_attention( | |
self.time_decay, | |
self.time_first, | |
key, | |
value, | |
state=layer_state, | |
return_state=use_cache, | |
) | |
if layer_state is not None: | |
state[2][:, :, self.layer_id] = layer_state[0] | |
state[3][:, :, self.layer_id] = layer_state[1] | |
state[4][:, :, self.layer_id] = layer_state[2] | |
return self.output(receptance * rwkv), state | |
class RwkvFeedForward(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.config = config | |
self.layer_id = layer_id | |
hidden_size = config.hidden_size | |
intermediate_size = ( | |
config.intermediate_size if config.intermediate_size is not None else 4 * config.hidden_size | |
) | |
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) | |
self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size)) | |
self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, hidden_size)) | |
self.key = nn.Linear(hidden_size, intermediate_size, bias=False) | |
self.receptance = nn.Linear(hidden_size, hidden_size, bias=False) | |
self.value = nn.Linear(intermediate_size, hidden_size, bias=False) | |
def forward(self, hidden, state=None): | |
if hidden.size(1) == 1 and state is not None: | |
shifted = state[0][:, :, self.layer_id] | |
else: | |
shifted = self.time_shift(hidden) | |
if state is not None: | |
shifted[:, 0] = state[0][:, :, self.layer_id] | |
key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key) | |
receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance) | |
key = torch.square(torch.relu(self.key(key))) | |
value = self.value(key) | |
receptance = torch.sigmoid(self.receptance(receptance)) | |
if state is not None: | |
state[0][:, :, self.layer_id] = hidden[:, -1] | |
return receptance * value, state | |
class RwkvBlock(nn.Module): | |
def __init__(self, config, layer_id): | |
super().__init__() | |
self.config = config | |
self.layer_id = layer_id | |
if layer_id == 0: | |
self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) | |
self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) | |
self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) | |
self.attention = RwkvSelfAttention(config, layer_id) | |
self.feed_forward = RwkvFeedForward(config, layer_id) | |
def forward(self, hidden, state=None, use_cache=False, output_attentions=False): | |
if self.layer_id == 0: | |
hidden = self.pre_ln(hidden) | |
attention, state = self.attention(self.ln1(hidden), state=state, use_cache=use_cache) | |
hidden = hidden + attention | |
feed_forward, state = self.feed_forward(self.ln2(hidden), state=state) | |
hidden = hidden + feed_forward | |
outputs = (hidden, state) | |
if output_attentions: | |
outputs += (attention,) | |
else: | |
outputs += (None,) | |
return outputs | |
class RwkvPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = RwkvConfig | |
base_model_prefix = "rwkv" | |
_no_split_modules = ["RwkvBlock"] | |
_keep_in_fp32_modules = ["time_decay", "time_first"] | |
supports_gradient_checkpointing = True | |
_is_stateful = True | |
def _init_weights(self, module): | |
"""Initialize the weights.""" | |
if isinstance(module, RwkvSelfAttention): | |
layer_id = module.layer_id | |
num_hidden_layers = module.config.num_hidden_layers | |
hidden_size = module.config.hidden_size | |
attention_hidden_size = module.attention_hidden_size | |
ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1 | |
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0 | |
time_weight = torch.tensor( | |
[i / hidden_size for i in range(hidden_size)], | |
dtype=module.time_mix_key.dtype, | |
device=module.time_mix_key.device, | |
) | |
time_weight = time_weight[None, None, :] | |
decay_speed = [ | |
-5 + 8 * (h / (attention_hidden_size - 1)) ** (0.7 + 1.3 * ratio_0_to_1) | |
for h in range(attention_hidden_size) | |
] | |
decay_speed = torch.tensor(decay_speed, dtype=module.time_decay.dtype, device=module.time_decay.device) | |
zigzag = ( | |
torch.tensor( | |
[(i + 1) % 3 - 1 for i in range(attention_hidden_size)], | |
dtype=module.time_first.dtype, | |
device=module.time_first.device, | |
) | |
* 0.5 | |
) | |
with torch.no_grad(): | |
module.time_decay.data = decay_speed | |
module.time_first.data = torch.ones_like(module.time_first * math.log(0.3) + zigzag) | |
module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0) | |
module.time_mix_value.data = torch.pow(time_weight, ratio_1_to_almost0) + 0.3 * ratio_0_to_1 | |
module.time_mix_receptance.data = torch.pow(time_weight, 0.5 * ratio_1_to_almost0) | |
elif isinstance(module, RwkvFeedForward): | |
layer_id = module.layer_id | |
num_hidden_layers = module.config.num_hidden_layers | |
hidden_size = module.config.hidden_size | |
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0 | |
time_weight = torch.tensor( | |
[i / hidden_size for i in range(hidden_size)], | |
dtype=module.time_mix_key.dtype, | |
device=module.time_mix_key.device, | |
) | |
time_weight = time_weight[None, None, :] | |
with torch.no_grad(): | |
module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0) | |
module.time_mix_receptance.data = torch.pow(time_weight, ratio_1_to_almost0) | |
class RwkvOutput(ModelOutput): | |
""" | |
Class for the RWKV model outputs. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`): | |
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to | |
avoid providing the old `input_ids`. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
state: Optional[List[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class RwkvCausalLMOutput(ModelOutput): | |
""" | |
Base class for causal language model (or autoregressive) outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss (for next-token prediction). | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`): | |
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to | |
avoid providing the old `input_ids`. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
state: Optional[List[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
RWKV_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`RwkvConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
RWKV_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): | |
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else | |
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input | |
sequence tokens in the vocabulary. | |
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as | |
`input_ids`. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
This is currently not used by `RwkvModel`, but will be supported in the future. | |
[What are attention masks?](../glossary#attention-mask) | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
state (tuple of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`, *optional*): | |
If passed along, the model uses the previous state in all the blocks (which will give the output for the | |
`input_ids` provided as if the model add `state_input_ids + input_ids` as context). | |
use_cache (`bool`, *optional*): | |
If set to `True`, the last state is returned and can be used to quickly generate the next logits. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class RwkvModel(RwkvPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) | |
self.blocks = nn.ModuleList([RwkvBlock(config, layer_id=idx) for idx in range(config.num_hidden_layers)]) | |
self.ln_out = nn.LayerNorm(config.hidden_size) | |
self.layers_are_rescaled = False | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings | |
def set_input_embeddings(self, new_embeddings): | |
self.embeddings = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, # noqa | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
state: Optional[List[torch.FloatTensor]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, RwkvOutput]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if attention_mask is None: | |
logger.warning_once("`attention_mask` was passed, but it is unused in this model.") | |
if self.training == self.layers_are_rescaled: | |
self._rescale_layers() | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is None and inputs_embeds is None: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if inputs_embeds is None: | |
inputs_embeds = self.embeddings(input_ids) | |
if use_cache and state is None: | |
shape = (inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers) | |
state = [ | |
torch.zeros( | |
*shape, dtype=inputs_embeds.dtype if i <= 1 else torch.float32, device=inputs_embeds.device | |
) | |
for i in range(5) | |
] | |
state[4] -= 1e30 | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
hidden_states = inputs_embeds | |
all_self_attentions = () if output_attentions else None | |
all_hidden_states = () if output_hidden_states else None | |
for idx, block in enumerate(self.blocks): | |
if self.gradient_checkpointing and self.training: | |
hidden_states, state, attentions = self._gradient_checkpointing_func( | |
block.__call__, hidden_states, state, use_cache, output_attentions | |
) | |
else: | |
hidden_states, state, attentions = block( | |
hidden_states, state=state, use_cache=use_cache, output_attentions=output_attentions | |
) | |
if ( | |
self.layers_are_rescaled | |
and self.config.rescale_every > 0 | |
and (idx + 1) % self.config.rescale_every == 0 | |
): | |
hidden_states = hidden_states / 2 | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (attentions,) | |
hidden_states = self.ln_out(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(x for x in [hidden_states, state, all_hidden_states, all_self_attentions] if x is not None) | |
return RwkvOutput( | |
last_hidden_state=hidden_states, | |
state=state, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
def _rescale_layers(self): | |
# Layers should be rescaled for inference only. | |
if self.layers_are_rescaled == (not self.training): | |
return | |
if self.config.rescale_every > 0: | |
with torch.no_grad(): | |
for block_id, block in enumerate(self.blocks): | |
if self.training: | |
block.attention.output.weight.mul_(2 ** int(block_id // self.config.rescale_every)) | |
block.feed_forward.value.weight.mul_(2 ** int(block_id // self.config.rescale_every)) | |
else: | |
# Deal with quantization statistics | |
if hasattr(block.attention.output.weight, "SCB"): | |
block.attention.output.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every)) | |
block.feed_forward.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every)) | |
elif hasattr(block.attention.output.weight, "quant_state"): | |
self._bnb_4bit_dequantize_and_rescale(block.attention.output, block_id) | |
self._bnb_4bit_dequantize_and_rescale(block.feed_forward.value, block_id) | |
else: | |
block.attention.output.weight.div_(2 ** int(block_id // self.config.rescale_every)) | |
block.feed_forward.value.weight.div_(2 ** int(block_id // self.config.rescale_every)) | |
self.layers_are_rescaled = not self.training | |
def _bnb_4bit_dequantize_and_rescale(self, target_layer, block_id): | |
r""" | |
Perform the dequantization and rescaling of the weights of a given layer. After that operation the layer will | |
be quantized again. | |
""" | |
if not is_bitsandbytes_available(): | |
raise ImportError("Please install bitsandbytes to use this method.") | |
import bitsandbytes as bnb | |
dequant_weights = bnb.functional.dequantize_4bit(target_layer.weight.data, target_layer.weight.quant_state) | |
dequant_weights.div_(2 ** int(block_id // self.config.rescale_every)) | |
# re-quantize the model: | |
# we need to put it first on CPU then back to the device | |
# this will create an overhead :/ | |
# We set requires_grad=False as we cannot compute gradients on top of 4bit parameters anyway and to avoid | |
# bugs with bnb | |
quant_weight = bnb.nn.Params4bit(dequant_weights.to("cpu"), requires_grad=False).to(dequant_weights.device) | |
setattr(target_layer, "weight", quant_weight) | |
class RwkvForCausalLM(RwkvPreTrainedModel): | |
_tied_weights_keys = ["head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.rwkv = RwkvModel(config) | |
self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.head | |
def set_output_embeddings(self, new_embeddings): | |
self.head = new_embeddings | |
def prepare_inputs_for_generation(self, input_ids, state=None, inputs_embeds=None, **kwargs): | |
# only last token for inputs_ids if the state is passed along. | |
if state is not None: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and state is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs["state"] = state | |
return model_inputs | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, # noqa | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
state: Optional[List[torch.FloatTensor]] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, RwkvCausalLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
rwkv_outputs = self.rwkv( | |
input_ids, | |
inputs_embeds=inputs_embeds, | |
state=state, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = rwkv_outputs[0] | |
logits = self.head(hidden_states) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + rwkv_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return RwkvCausalLMOutput( | |
loss=loss, | |
logits=logits, | |
state=rwkv_outputs.state, | |
hidden_states=rwkv_outputs.hidden_states, | |
attentions=rwkv_outputs.attentions, | |
) | |