Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/sam
/configuration_sam.py
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""SAM model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class SamPromptEncoderConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`SamPromptEncoder`]. The [`SamPromptEncoder`] | |
module is used to encode the input 2D points and bounding boxes. Instantiating a configuration defaults will yield | |
a similar configuration to that of the SAM-vit-h | |
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 256): | |
Dimensionality of the hidden states. | |
image_size (`int`, *optional*, defaults to 1024): | |
The expected output resolution of the image. | |
patch_size (`int`, *optional*, defaults to 16): | |
The size (resolution) of each patch. | |
mask_input_channels (`int`, *optional*, defaults to 16): | |
The number of channels to be fed to the `MaskDecoder` module. | |
num_point_embeddings (`int`, *optional*, defaults to 4): | |
The number of point embeddings to be used. | |
hidden_act (`str`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function in the encoder and pooler. | |
""" | |
def __init__( | |
self, | |
hidden_size=256, | |
image_size=1024, | |
patch_size=16, | |
mask_input_channels=16, | |
num_point_embeddings=4, | |
hidden_act="gelu", | |
layer_norm_eps=1e-6, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.image_embedding_size = image_size // patch_size | |
self.mask_input_channels = mask_input_channels | |
self.num_point_embeddings = num_point_embeddings | |
self.hidden_act = hidden_act | |
self.layer_norm_eps = layer_norm_eps | |
class SamMaskDecoderConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`SamMaskDecoder`]. It is used to instantiate a SAM | |
mask decoder to the specified arguments, defining the model architecture. Instantiating a configuration defaults | |
will yield a similar configuration to that of the SAM-vit-h | |
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 256): | |
Dimensionality of the hidden states. | |
hidden_act (`str`, *optional*, defaults to `"relu"`): | |
The non-linear activation function used inside the `SamMaskDecoder` module. | |
mlp_dim (`int`, *optional*, defaults to 2048): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 2): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 8): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
attention_downsample_rate (`int`, *optional*, defaults to 2): | |
The downsampling rate of the attention layer. | |
num_multimask_outputs (`int`, *optional*, defaults to 3): | |
The number of outputs from the `SamMaskDecoder` module. In the Segment Anything paper, this is set to 3. | |
iou_head_depth (`int`, *optional*, defaults to 3): | |
The number of layers in the IoU head module. | |
iou_head_hidden_dim (`int`, *optional*, defaults to 256): | |
The dimensionality of the hidden states in the IoU head module. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the layer normalization layers. | |
""" | |
def __init__( | |
self, | |
hidden_size=256, | |
hidden_act="relu", | |
mlp_dim=2048, | |
num_hidden_layers=2, | |
num_attention_heads=8, | |
attention_downsample_rate=2, | |
num_multimask_outputs=3, | |
iou_head_depth=3, | |
iou_head_hidden_dim=256, | |
layer_norm_eps=1e-6, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.hidden_act = hidden_act | |
self.mlp_dim = mlp_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.attention_downsample_rate = attention_downsample_rate | |
self.num_multimask_outputs = num_multimask_outputs | |
self.iou_head_depth = iou_head_depth | |
self.iou_head_hidden_dim = iou_head_hidden_dim | |
self.layer_norm_eps = layer_norm_eps | |
class SamVisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`SamVisionModel`]. It is used to instantiate a SAM | |
vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration | |
defaults will yield a similar configuration to that of the SAM ViT-h | |
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
output_channels (`int`, *optional*, defaults to 256): | |
Dimensionality of the output channels in the Patch Encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_channels (`int`, *optional*, defaults to 3): | |
Number of channels in the input image. | |
image_size (`int`, *optional*, defaults to 1024): | |
Expected resolution. Target size of the resized input image. | |
patch_size (`int`, *optional*, defaults to 16): | |
Size of the patches to be extracted from the input image. | |
hidden_act (`str`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) | |
layer_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 1e-10): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
qkv_bias (`bool`, *optional*, defaults to `True`): | |
Whether to add a bias to query, key, value projections. | |
mlp_ratio (`float`, *optional*, defaults to 4.0): | |
Ratio of mlp hidden dim to embedding dim. | |
use_abs_pos (`bool`, *optional*, defaults to `True`): | |
Whether to use absolute position embedding. | |
use_rel_pos (`bool`, *optional*, defaults to `True`): | |
Whether to use relative position embedding. | |
window_size (`int`, *optional*, defaults to 14): | |
Window size for relative position. | |
global_attn_indexes (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`): | |
The indexes of the global attention layers. | |
num_pos_feats (`int`, *optional*, defaults to 128): | |
The dimensionality of the position embedding. | |
mlp_dim (`int`, *optional*): | |
The dimensionality of the MLP layer in the Transformer encoder. If `None`, defaults to `mlp_ratio * | |
hidden_size`. | |
""" | |
def __init__( | |
self, | |
hidden_size=768, | |
output_channels=256, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
num_channels=3, | |
image_size=1024, | |
patch_size=16, | |
hidden_act="gelu", | |
layer_norm_eps=1e-06, | |
attention_dropout=0.0, | |
initializer_range=1e-10, | |
qkv_bias=True, | |
mlp_ratio=4.0, | |
use_abs_pos=True, | |
use_rel_pos=True, | |
window_size=14, | |
global_attn_indexes=[2, 5, 8, 11], | |
num_pos_feats=128, | |
mlp_dim=None, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.output_channels = output_channels | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.hidden_act = hidden_act | |
self.layer_norm_eps = layer_norm_eps | |
self.attention_dropout = attention_dropout | |
self.initializer_range = initializer_range | |
self.qkv_bias = qkv_bias | |
self.mlp_ratio = mlp_ratio | |
self.use_abs_pos = use_abs_pos | |
self.use_rel_pos = use_rel_pos | |
self.window_size = window_size | |
self.global_attn_indexes = global_attn_indexes | |
self.num_pos_feats = num_pos_feats | |
self.mlp_dim = int(hidden_size * mlp_ratio) if mlp_dim is None else mlp_dim | |
class SamConfig(PretrainedConfig): | |
r""" | |
[`SamConfig`] is the configuration class to store the configuration of a [`SamModel`]. It is used to instantiate a | |
SAM model according to the specified arguments, defining the vision model, prompt-encoder model and mask decoder | |
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the | |
SAM-ViT-H [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vision_config (Union[`dict`, `SamVisionConfig`], *optional*): | |
Dictionary of configuration options used to initialize [`SamVisionConfig`]. | |
prompt_encoder_config (Union[`dict`, `SamPromptEncoderConfig`], *optional*): | |
Dictionary of configuration options used to initialize [`SamPromptEncoderConfig`]. | |
mask_decoder_config (Union[`dict`, `SamMaskDecoderConfig`], *optional*): | |
Dictionary of configuration options used to initialize [`SamMaskDecoderConfig`]. | |
kwargs (*optional*): | |
Dictionary of keyword arguments. | |
Example: | |
```python | |
>>> from transformers import ( | |
... SamVisionConfig, | |
... SamPromptEncoderConfig, | |
... SamMaskDecoderConfig, | |
... SamModel, | |
... ) | |
>>> # Initializing a SamConfig with `"facebook/sam-vit-huge"` style configuration | |
>>> configuration = SamConfig() | |
>>> # Initializing a SamModel (with random weights) from the `"facebook/sam-vit-huge"` style configuration | |
>>> model = SamModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
>>> # We can also initialize a SamConfig from a SamVisionConfig, SamPromptEncoderConfig, and SamMaskDecoderConfig | |
>>> # Initializing SAM vision, SAM Q-Former and language model configurations | |
>>> vision_config = SamVisionConfig() | |
>>> prompt_encoder_config = SamPromptEncoderConfig() | |
>>> mask_decoder_config = SamMaskDecoderConfig() | |
>>> config = SamConfig(vision_config, prompt_encoder_config, mask_decoder_config) | |
```""" | |
model_type = "sam" | |
def __init__( | |
self, | |
vision_config=None, | |
prompt_encoder_config=None, | |
mask_decoder_config=None, | |
initializer_range=0.02, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
vision_config = vision_config if vision_config is not None else {} | |
prompt_encoder_config = prompt_encoder_config if prompt_encoder_config is not None else {} | |
mask_decoder_config = mask_decoder_config if mask_decoder_config is not None else {} | |
if isinstance(vision_config, SamVisionConfig): | |
vision_config = vision_config.to_dict() | |
if isinstance(prompt_encoder_config, SamPromptEncoderConfig): | |
prompt_encoder_config = prompt_encoder_config.to_dict() | |
if isinstance(mask_decoder_config, SamMaskDecoderConfig): | |
mask_decoder_config = mask_decoder_config.to_dict() | |
self.vision_config = SamVisionConfig(**vision_config) | |
self.prompt_encoder_config = SamPromptEncoderConfig(**prompt_encoder_config) | |
self.mask_decoder_config = SamMaskDecoderConfig(**mask_decoder_config) | |
self.initializer_range = initializer_range | |