Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/seggpt
/configuration_seggpt.py
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""SegGpt model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class SegGptConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`SegGptModel`]. It is used to instantiate a SegGPT | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the SegGPT | |
[BAAI/seggpt-vit-large](https://huggingface.co/BAAI/seggpt-vit-large) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 1024): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 24): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the layer normalization layers. | |
image_size (`List[int]`, *optional*, defaults to `[896, 448]`): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 16): | |
The size (resolution) of each patch. | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
qkv_bias (`bool`, *optional*, defaults to `True`): | |
Whether to add a bias to the queries, keys and values. | |
mlp_dim (`int`, *optional*): | |
The dimensionality of the MLP layer in the Transformer encoder. If unset, defaults to | |
`hidden_size` * 4. | |
drop_path_rate (`float`, *optional*, defaults to 0.1): | |
The drop path rate for the dropout layers. | |
pretrain_image_size (`int`, *optional*, defaults to 224): | |
The pretrained size of the absolute position embeddings. | |
decoder_hidden_size (`int`, *optional*, defaults to 64): | |
Hidden size for decoder. | |
use_relative_position_embeddings (`bool`, *optional*, defaults to `True`): | |
Whether to use relative position embeddings in the attention layers. | |
merge_index (`int`, *optional*, defaults to 2): | |
The index of the encoder layer to merge the embeddings. | |
intermediate_hidden_state_indices (`List[int]`, *optional*, defaults to `[5, 11, 17, 23]`): | |
The indices of the encoder layers which we store as features for the decoder. | |
beta (`float`, *optional*, defaults to 0.01): | |
Regularization factor for SegGptLoss (smooth-l1 loss). | |
Example: | |
```python | |
>>> from transformers import SegGptConfig, SegGptModel | |
>>> # Initializing a SegGPT seggpt-vit-large style configuration | |
>>> configuration = SegGptConfig() | |
>>> # Initializing a model (with random weights) from the seggpt-vit-large style configuration | |
>>> model = SegGptModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "seggpt" | |
def __init__( | |
self, | |
hidden_size=1024, | |
num_hidden_layers=24, | |
num_attention_heads=16, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.0, | |
initializer_range=0.02, | |
layer_norm_eps=1e-6, | |
image_size=[896, 448], | |
patch_size=16, | |
num_channels=3, | |
qkv_bias=True, | |
mlp_dim=None, | |
drop_path_rate=0.1, | |
pretrain_image_size=224, | |
decoder_hidden_size=64, | |
use_relative_position_embeddings=True, | |
merge_index=2, | |
intermediate_hidden_state_indices=[5, 11, 17, 23], | |
beta=0.01, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
if merge_index > min(intermediate_hidden_state_indices): | |
raise ValueError( | |
f"Merge index must be less than the minimum encoder output index, but got {merge_index=} and {intermediate_hidden_state_indices=}" | |
) | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.qkv_bias = qkv_bias | |
self.drop_path_rate = drop_path_rate | |
self.pretrain_image_size = pretrain_image_size | |
self.decoder_hidden_size = decoder_hidden_size | |
self.use_relative_position_embeddings = use_relative_position_embeddings | |
self.merge_index = merge_index | |
self.intermediate_hidden_state_indices = intermediate_hidden_state_indices | |
self.beta = beta | |
self.mlp_dim = int(hidden_size * 4) if mlp_dim is None else mlp_dim | |