Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/speecht5
/configuration_speecht5.py
# coding=utf-8 | |
# Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""SpeechT5 model configuration""" | |
import functools | |
import operator | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class SpeechT5Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`SpeechT5Model`]. It is used to instantiate a | |
SpeechT5 model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the SpeechT5 | |
[microsoft/speecht5_asr](https://huggingface.co/microsoft/speecht5_asr) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 81): | |
Vocabulary size of the SpeechT5 model. Defines the number of different tokens that can be represented by | |
the `inputs_ids` passed to the forward method of [`SpeechT5Model`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
encoder_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
encoder_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
encoder_ffn_dim (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
encoder_layerdrop (`float`, *optional*, defaults to 0.1): | |
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) | |
for more details. | |
decoder_layers (`int`, *optional*, defaults to 6): | |
Number of hidden layers in the Transformer decoder. | |
decoder_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
decoder_ffn_dim (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer decoder. | |
decoder_layerdrop (`float`, *optional*, defaults to 0.1): | |
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) | |
for more details. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
positional_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probability for the text position encoding layers. | |
hidden_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
activation_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for activations inside the fully connected layer. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the layer normalization layers. | |
scale_embedding (`bool`, *optional*, defaults to `False`): | |
Scale embeddings by diving by sqrt(d_model). | |
feat_extract_norm (`str`, *optional*, defaults to `"group"`): | |
The norm to be applied to 1D convolutional layers in the speech encoder pre-net. One of `"group"` for group | |
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D | |
convolutional layers. | |
feat_proj_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout probability for output of the speech encoder pre-net. | |
feat_extract_activation (`str, `optional`, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the 1D convolutional layers of the feature | |
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. | |
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): | |
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the | |
speech encoder pre-net. The length of *conv_dim* defines the number of 1D convolutional layers. | |
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): | |
A tuple of integers defining the stride of each 1D convolutional layer in the speech encoder pre-net. The | |
length of *conv_stride* defines the number of convolutional layers and has to match the length of | |
*conv_dim*. | |
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): | |
A tuple of integers defining the kernel size of each 1D convolutional layer in the speech encoder pre-net. | |
The length of *conv_kernel* defines the number of convolutional layers and has to match the length of | |
*conv_dim*. | |
conv_bias (`bool`, *optional*, defaults to `False`): | |
Whether the 1D convolutional layers have a bias. | |
num_conv_pos_embeddings (`int`, *optional*, defaults to 128): | |
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional | |
embeddings layer. | |
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): | |
Number of groups of 1D convolutional positional embeddings layer. | |
apply_spec_augment (`bool`, *optional*, defaults to `True`): | |
Whether to apply *SpecAugment* data augmentation to the outputs of the speech encoder pre-net. For | |
reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech | |
Recognition](https://arxiv.org/abs/1904.08779). | |
mask_time_prob (`float`, *optional*, defaults to 0.05): | |
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking | |
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If | |
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be | |
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the | |
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. | |
mask_time_length (`int`, *optional*, defaults to 10): | |
Length of vector span along the time axis. | |
mask_time_min_masks (`int`, *optional*, defaults to 2),: | |
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, | |
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < | |
mask_time_min_masks'' | |
mask_feature_prob (`float`, *optional*, defaults to 0.0): | |
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The | |
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over | |
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector | |
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap | |
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is | |
True`. | |
mask_feature_length (`int`, *optional*, defaults to 10): | |
Length of vector span along the feature axis. | |
mask_feature_min_masks (`int`, *optional*, defaults to 0),: | |
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time | |
step, irrespectively of `mask_feature_prob`. Only relevant if | |
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' | |
num_mel_bins (`int`, *optional*, defaults to 80): | |
Number of mel features used per input features. Used by the speech decoder pre-net. Should correspond to | |
the value used in the [`SpeechT5Processor`] class. | |
speech_decoder_prenet_layers (`int`, *optional*, defaults to 2): | |
Number of layers in the speech decoder pre-net. | |
speech_decoder_prenet_units (`int`, *optional*, defaults to 256): | |
Dimensionality of the layers in the speech decoder pre-net. | |
speech_decoder_prenet_dropout (`float`, *optional*, defaults to 0.5): | |
The dropout probability for the speech decoder pre-net layers. | |
speaker_embedding_dim (`int`, *optional*, defaults to 512): | |
Dimensionality of the *XVector* embedding vectors. | |
speech_decoder_postnet_layers (`int`, *optional*, defaults to 5): | |
Number of layers in the speech decoder post-net. | |
speech_decoder_postnet_units (`int`, *optional*, defaults to 256): | |
Dimensionality of the layers in the speech decoder post-net. | |
speech_decoder_postnet_kernel (`int`, *optional*, defaults to 5): | |
Number of convolutional filter channels in the speech decoder post-net. | |
speech_decoder_postnet_dropout (`float`, *optional*, defaults to 0.5): | |
The dropout probability for the speech decoder post-net layers. | |
reduction_factor (`int`, *optional*, defaults to 2): | |
Spectrogram length reduction factor for the speech decoder inputs. | |
max_speech_positions (`int`, *optional*, defaults to 4000): | |
The maximum sequence length of speech features that this model might ever be used with. | |
max_text_positions (`int`, *optional*, defaults to 450): | |
The maximum sequence length of text features that this model might ever be used with. | |
encoder_max_relative_position (`int`, *optional*, defaults to 160): | |
Maximum distance for relative position embedding in the encoder. | |
use_guided_attention_loss (`bool`, *optional*, defaults to `True`): | |
Whether to apply guided attention loss while training the TTS model. | |
guided_attention_loss_num_heads (`int`, *optional*, defaults to 2): | |
Number of attention heads the guided attention loss will be applied to. Use -1 to apply this loss to all | |
attention heads. | |
guided_attention_loss_sigma (`float`, *optional*, defaults to 0.4): | |
Standard deviation for guided attention loss. | |
guided_attention_loss_scale (`float`, *optional*, defaults to 10.0): | |
Scaling coefficient for guided attention loss (also known as lambda). | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
Example: | |
```python | |
>>> from transformers import SpeechT5Model, SpeechT5Config | |
>>> # Initializing a "microsoft/speecht5_asr" style configuration | |
>>> configuration = SpeechT5Config() | |
>>> # Initializing a model (with random weights) from the "microsoft/speecht5_asr" style configuration | |
>>> model = SpeechT5Model(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "speecht5" | |
attribute_map = {"num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers"} | |
def __init__( | |
self, | |
vocab_size=81, | |
hidden_size=768, | |
encoder_layers=12, | |
encoder_attention_heads=12, | |
encoder_ffn_dim=3072, | |
encoder_layerdrop=0.1, | |
decoder_layers=6, | |
decoder_ffn_dim=3072, | |
decoder_attention_heads=12, | |
decoder_layerdrop=0.1, | |
hidden_act="gelu", | |
positional_dropout=0.1, | |
hidden_dropout=0.1, | |
attention_dropout=0.1, | |
activation_dropout=0.1, | |
initializer_range=0.02, | |
layer_norm_eps=1e-5, | |
scale_embedding=False, | |
feat_extract_norm="group", | |
feat_proj_dropout=0.0, | |
feat_extract_activation="gelu", | |
conv_dim=(512, 512, 512, 512, 512, 512, 512), | |
conv_stride=(5, 2, 2, 2, 2, 2, 2), | |
conv_kernel=(10, 3, 3, 3, 3, 2, 2), | |
conv_bias=False, | |
num_conv_pos_embeddings=128, | |
num_conv_pos_embedding_groups=16, | |
apply_spec_augment=True, | |
mask_time_prob=0.05, | |
mask_time_length=10, | |
mask_time_min_masks=2, | |
mask_feature_prob=0.0, | |
mask_feature_length=10, | |
mask_feature_min_masks=0, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
decoder_start_token_id=2, | |
num_mel_bins=80, | |
speech_decoder_prenet_layers=2, | |
speech_decoder_prenet_units=256, | |
speech_decoder_prenet_dropout=0.5, | |
speaker_embedding_dim=512, | |
speech_decoder_postnet_layers=5, | |
speech_decoder_postnet_units=256, | |
speech_decoder_postnet_kernel=5, | |
speech_decoder_postnet_dropout=0.5, | |
reduction_factor=2, | |
max_speech_positions=4000, | |
max_text_positions=450, | |
encoder_max_relative_position=160, | |
use_guided_attention_loss=True, | |
guided_attention_loss_num_heads=2, | |
guided_attention_loss_sigma=0.4, | |
guided_attention_loss_scale=10.0, | |
use_cache=True, | |
is_encoder_decoder=True, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.encoder_layers = encoder_layers | |
self.encoder_ffn_dim = encoder_ffn_dim | |
self.encoder_attention_heads = encoder_attention_heads | |
self.encoder_layerdrop = encoder_layerdrop | |
self.decoder_layers = decoder_layers | |
self.decoder_ffn_dim = decoder_ffn_dim | |
self.decoder_attention_heads = decoder_attention_heads | |
self.decoder_layerdrop = decoder_layerdrop | |
self.hidden_act = hidden_act | |
self.positional_dropout = positional_dropout | |
self.hidden_dropout = hidden_dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.scale_embedding = scale_embedding | |
self.feat_extract_norm = feat_extract_norm | |
self.feat_proj_dropout = feat_proj_dropout | |
self.feat_extract_activation = feat_extract_activation | |
self.conv_dim = list(conv_dim) | |
self.conv_stride = list(conv_stride) | |
self.conv_kernel = list(conv_kernel) | |
self.conv_bias = conv_bias | |
self.num_conv_pos_embeddings = num_conv_pos_embeddings | |
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups | |
self.num_feat_extract_layers = len(self.conv_dim) | |
if ( | |
(len(self.conv_stride) != self.num_feat_extract_layers) | |
or (len(self.conv_kernel) != self.num_feat_extract_layers) | |
or (len(self.conv_dim) != self.num_feat_extract_layers) | |
): | |
raise ValueError( | |
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" | |
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" | |
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," | |
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." | |
) | |
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 | |
self.apply_spec_augment = apply_spec_augment | |
self.mask_time_prob = mask_time_prob | |
self.mask_time_length = mask_time_length | |
self.mask_time_min_masks = mask_time_min_masks | |
self.mask_feature_prob = mask_feature_prob | |
self.mask_feature_length = mask_feature_length | |
self.mask_feature_min_masks = mask_feature_min_masks | |
self.num_mel_bins = num_mel_bins | |
self.speech_decoder_prenet_layers = speech_decoder_prenet_layers | |
self.speech_decoder_prenet_units = speech_decoder_prenet_units | |
self.speech_decoder_prenet_dropout = speech_decoder_prenet_dropout | |
self.speaker_embedding_dim = speaker_embedding_dim | |
self.speech_decoder_postnet_layers = speech_decoder_postnet_layers | |
self.speech_decoder_postnet_units = speech_decoder_postnet_units | |
self.speech_decoder_postnet_kernel = speech_decoder_postnet_kernel | |
self.speech_decoder_postnet_dropout = speech_decoder_postnet_dropout | |
self.reduction_factor = reduction_factor | |
self.max_speech_positions = max_speech_positions | |
self.max_text_positions = max_text_positions | |
self.encoder_max_relative_position = encoder_max_relative_position | |
self.use_guided_attention_loss = use_guided_attention_loss | |
self.guided_attention_loss_num_heads = guided_attention_loss_num_heads | |
self.guided_attention_loss_sigma = guided_attention_loss_sigma | |
self.guided_attention_loss_scale = guided_attention_loss_scale | |
self.use_cache = use_cache | |
self.is_encoder_decoder = is_encoder_decoder | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
is_encoder_decoder=is_encoder_decoder, | |
decoder_start_token_id=decoder_start_token_id, | |
**kwargs, | |
) | |
def inputs_to_logits_ratio(self): | |
return functools.reduce(operator.mul, self.conv_stride, 1) | |
class SpeechT5HifiGanConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`SpeechT5HifiGanModel`]. It is used to instantiate | |
a SpeechT5 HiFi-GAN vocoder model according to the specified arguments, defining the model architecture. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the SpeechT5 | |
[microsoft/speecht5_hifigan](https://huggingface.co/microsoft/speecht5_hifigan) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
model_in_dim (`int`, *optional*, defaults to 80): | |
The number of frequency bins in the input log-mel spectrogram. | |
sampling_rate (`int`, *optional*, defaults to 16000): | |
The sampling rate at which the output audio will be generated, expressed in hertz (Hz). | |
upsample_initial_channel (`int`, *optional*, defaults to 512): | |
The number of input channels into the upsampling network. | |
upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[4, 4, 4, 4]`): | |
A tuple of integers defining the stride of each 1D convolutional layer in the upsampling network. The | |
length of *upsample_rates* defines the number of convolutional layers and has to match the length of | |
*upsample_kernel_sizes*. | |
upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 8, 8]`): | |
A tuple of integers defining the kernel size of each 1D convolutional layer in the upsampling network. The | |
length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of | |
*upsample_rates*. | |
resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): | |
A tuple of integers defining the kernel sizes of the 1D convolutional layers in the multi-receptive field | |
fusion (MRF) module. | |
resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): | |
A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the | |
multi-receptive field fusion (MRF) module. | |
initializer_range (`float`, *optional*, defaults to 0.01): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
leaky_relu_slope (`float`, *optional*, defaults to 0.1): | |
The angle of the negative slope used by the leaky ReLU activation. | |
normalize_before (`bool`, *optional*, defaults to `True`): | |
Whether or not to normalize the spectrogram before vocoding using the vocoder's learned mean and variance. | |
Example: | |
```python | |
>>> from transformers import SpeechT5HifiGan, SpeechT5HifiGanConfig | |
>>> # Initializing a "microsoft/speecht5_hifigan" style configuration | |
>>> configuration = SpeechT5HifiGanConfig() | |
>>> # Initializing a model (with random weights) from the "microsoft/speecht5_hifigan" style configuration | |
>>> model = SpeechT5HifiGan(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "hifigan" | |
def __init__( | |
self, | |
model_in_dim=80, | |
sampling_rate=16000, | |
upsample_initial_channel=512, | |
upsample_rates=[4, 4, 4, 4], | |
upsample_kernel_sizes=[8, 8, 8, 8], | |
resblock_kernel_sizes=[3, 7, 11], | |
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
initializer_range=0.01, | |
leaky_relu_slope=0.1, | |
normalize_before=True, | |
**kwargs, | |
): | |
self.model_in_dim = model_in_dim | |
self.sampling_rate = sampling_rate | |
self.upsample_initial_channel = upsample_initial_channel | |
self.upsample_rates = upsample_rates | |
self.upsample_kernel_sizes = upsample_kernel_sizes | |
self.resblock_kernel_sizes = resblock_kernel_sizes | |
self.resblock_dilation_sizes = resblock_dilation_sizes | |
self.initializer_range = initializer_range | |
self.leaky_relu_slope = leaky_relu_slope | |
self.normalize_before = normalize_before | |
super().__init__(**kwargs) | |