Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/squeezebert
/configuration_squeezebert.py
# coding=utf-8 | |
# Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""SqueezeBERT model configuration""" | |
from collections import OrderedDict | |
from typing import Mapping | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class SqueezeBertConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`SqueezeBertModel`]. It is used to instantiate a | |
SqueezeBERT model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the SqueezeBERT | |
[squeezebert/squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the SqueezeBERT model. Defines the number of different tokens that can be represented by | |
the `inputs_ids` passed when calling [`SqueezeBertModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (`int`, *optional*, defaults to 2): | |
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`]. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
pad_token_id (`int`, *optional*, defaults to 0): | |
The ID of the token in the word embedding to use as padding. | |
embedding_size (`int`, *optional*, defaults to 768): | |
The dimension of the word embedding vectors. | |
q_groups (`int`, *optional*, defaults to 4): | |
The number of groups in Q layer. | |
k_groups (`int`, *optional*, defaults to 4): | |
The number of groups in K layer. | |
v_groups (`int`, *optional*, defaults to 4): | |
The number of groups in V layer. | |
post_attention_groups (`int`, *optional*, defaults to 1): | |
The number of groups in the first feed forward network layer. | |
intermediate_groups (`int`, *optional*, defaults to 4): | |
The number of groups in the second feed forward network layer. | |
output_groups (`int`, *optional*, defaults to 4): | |
The number of groups in the third feed forward network layer. | |
Examples: | |
```python | |
>>> from transformers import SqueezeBertConfig, SqueezeBertModel | |
>>> # Initializing a SqueezeBERT configuration | |
>>> configuration = SqueezeBertConfig() | |
>>> # Initializing a model (with random weights) from the configuration above | |
>>> model = SqueezeBertModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
``` | |
""" | |
model_type = "squeezebert" | |
def __init__( | |
self, | |
vocab_size=30522, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
embedding_size=768, | |
q_groups=4, | |
k_groups=4, | |
v_groups=4, | |
post_attention_groups=1, | |
intermediate_groups=4, | |
output_groups=4, | |
**kwargs, | |
): | |
super().__init__(pad_token_id=pad_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.embedding_size = embedding_size | |
self.q_groups = q_groups | |
self.k_groups = k_groups | |
self.v_groups = v_groups | |
self.post_attention_groups = post_attention_groups | |
self.intermediate_groups = intermediate_groups | |
self.output_groups = output_groups | |
# # Copied from transformers.models.bert.configuration_bert.BertOnxxConfig with Bert->SqueezeBert | |
class SqueezeBertOnnxConfig(OnnxConfig): | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
if self.task == "multiple-choice": | |
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} | |
else: | |
dynamic_axis = {0: "batch", 1: "sequence"} | |
return OrderedDict( | |
[ | |
("input_ids", dynamic_axis), | |
("attention_mask", dynamic_axis), | |
("token_type_ids", dynamic_axis), | |
] | |
) | |