Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/superpoint
/configuration_superpoint.py
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class SuperPointConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`SuperPointForKeypointDetection`]. It is used to instantiate a | |
SuperPoint model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the SuperPoint | |
[magic-leap-community/superpoint](https://huggingface.co/magic-leap-community/superpoint) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
encoder_hidden_sizes (`List`, *optional*, defaults to `[64, 64, 128, 128]`): | |
The number of channels in each convolutional layer in the encoder. | |
decoder_hidden_size (`int`, *optional*, defaults to 256): The hidden size of the decoder. | |
keypoint_decoder_dim (`int`, *optional*, defaults to 65): The output dimension of the keypoint decoder. | |
descriptor_decoder_dim (`int`, *optional*, defaults to 256): The output dimension of the descriptor decoder. | |
keypoint_threshold (`float`, *optional*, defaults to 0.005): | |
The threshold to use for extracting keypoints. | |
max_keypoints (`int`, *optional*, defaults to -1): | |
The maximum number of keypoints to extract. If `-1`, will extract all keypoints. | |
nms_radius (`int`, *optional*, defaults to 4): | |
The radius for non-maximum suppression. | |
border_removal_distance (`int`, *optional*, defaults to 4): | |
The distance from the border to remove keypoints. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
Example: | |
```python | |
>>> from transformers import SuperPointConfig, SuperPointForKeypointDetection | |
>>> # Initializing a SuperPoint superpoint style configuration | |
>>> configuration = SuperPointConfig() | |
>>> # Initializing a model from the superpoint style configuration | |
>>> model = SuperPointForKeypointDetection(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "superpoint" | |
def __init__( | |
self, | |
encoder_hidden_sizes: List[int] = [64, 64, 128, 128], | |
decoder_hidden_size: int = 256, | |
keypoint_decoder_dim: int = 65, | |
descriptor_decoder_dim: int = 256, | |
keypoint_threshold: float = 0.005, | |
max_keypoints: int = -1, | |
nms_radius: int = 4, | |
border_removal_distance: int = 4, | |
initializer_range=0.02, | |
**kwargs, | |
): | |
self.encoder_hidden_sizes = encoder_hidden_sizes | |
self.decoder_hidden_size = decoder_hidden_size | |
self.keypoint_decoder_dim = keypoint_decoder_dim | |
self.descriptor_decoder_dim = descriptor_decoder_dim | |
self.keypoint_threshold = keypoint_threshold | |
self.max_keypoints = max_keypoints | |
self.nms_radius = nms_radius | |
self.border_removal_distance = border_removal_distance | |
self.initializer_range = initializer_range | |
super().__init__(**kwargs) | |