Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/swin
/modeling_swin.py
# coding=utf-8 | |
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch Swin Transformer model.""" | |
import collections.abc | |
import math | |
import warnings | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import BackboneOutput | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer | |
from ...utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
torch_int, | |
) | |
from ...utils.backbone_utils import BackboneMixin | |
from .configuration_swin import SwinConfig | |
logger = logging.get_logger(__name__) | |
# General docstring | |
_CONFIG_FOR_DOC = "SwinConfig" | |
# Base docstring | |
_CHECKPOINT_FOR_DOC = "microsoft/swin-tiny-patch4-window7-224" | |
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768] | |
# Image classification docstring | |
_IMAGE_CLASS_CHECKPOINT = "microsoft/swin-tiny-patch4-window7-224" | |
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" | |
# drop_path, SwinPatchEmbeddings, SwinPatchMerging and SwinDropPath are from the timm library. | |
class SwinEncoderOutput(ModelOutput): | |
""" | |
Swin encoder's outputs, with potential hidden states and attentions. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, hidden_size, height, width)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to | |
include the spatial dimensions. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class SwinModelOutput(ModelOutput): | |
""" | |
Swin model's outputs that also contains a pooling of the last hidden states. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed): | |
Average pooling of the last layer hidden-state. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, hidden_size, height, width)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to | |
include the spatial dimensions. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
pooler_output: Optional[torch.FloatTensor] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class SwinMaskedImageModelingOutput(ModelOutput): | |
""" | |
Swin masked image model outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided): | |
Masked image modeling (MLM) loss. | |
reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Reconstructed pixel values. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, hidden_size, height, width)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to | |
include the spatial dimensions. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
reconstruction: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
def logits(self): | |
warnings.warn( | |
"logits attribute is deprecated and will be removed in version 5 of Transformers." | |
" Please use the reconstruction attribute to retrieve the final output instead.", | |
FutureWarning, | |
) | |
return self.reconstruction | |
class SwinImageClassifierOutput(ModelOutput): | |
""" | |
Swin outputs for image classification. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Classification (or regression if config.num_labels==1) loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, hidden_size, height, width)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to | |
include the spatial dimensions. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
def window_partition(input_feature, window_size): | |
""" | |
Partitions the given input into windows. | |
""" | |
batch_size, height, width, num_channels = input_feature.shape | |
input_feature = input_feature.view( | |
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels | |
) | |
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) | |
return windows | |
def window_reverse(windows, window_size, height, width): | |
""" | |
Merges windows to produce higher resolution features. | |
""" | |
num_channels = windows.shape[-1] | |
windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) | |
windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) | |
return windows | |
class SwinEmbeddings(nn.Module): | |
""" | |
Construct the patch and position embeddings. Optionally, also the mask token. | |
""" | |
def __init__(self, config, use_mask_token=False): | |
super().__init__() | |
self.patch_embeddings = SwinPatchEmbeddings(config) | |
num_patches = self.patch_embeddings.num_patches | |
self.patch_grid = self.patch_embeddings.grid_size | |
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None | |
if config.use_absolute_embeddings: | |
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim)) | |
else: | |
self.position_embeddings = None | |
self.norm = nn.LayerNorm(config.embed_dim) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: | |
""" | |
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher | |
resolution images. | |
Source: | |
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 | |
""" | |
num_patches = embeddings.shape[1] - 1 | |
num_positions = self.position_embeddings.shape[1] - 1 | |
if num_patches == num_positions and height == width: | |
return self.position_embeddings | |
class_pos_embed = self.position_embeddings[:, 0] | |
patch_pos_embed = self.position_embeddings[:, 1:] | |
dim = embeddings.shape[-1] | |
h0 = height // self.config.patch_size | |
w0 = width // self.config.patch_size | |
# we add a small number to avoid floating point error in the interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
h0, w0 = h0 + 0.1, w0 + 0.1 | |
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) | |
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed, | |
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), | |
mode="bicubic", | |
align_corners=False, | |
) | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor], | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
interpolate_pos_encoding: bool = False, | |
) -> Tuple[torch.Tensor]: | |
_, num_channels, height, width = pixel_values.shape | |
embeddings, output_dimensions = self.patch_embeddings(pixel_values) | |
embeddings = self.norm(embeddings) | |
batch_size, seq_len, _ = embeddings.size() | |
if bool_masked_pos is not None: | |
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) | |
# replace the masked visual tokens by mask_tokens | |
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) | |
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask | |
if self.position_embeddings is not None: | |
if interpolate_pos_encoding: | |
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) | |
else: | |
embeddings = embeddings + self.position_embeddings | |
embeddings = self.dropout(embeddings) | |
return embeddings, output_dimensions | |
class SwinPatchEmbeddings(nn.Module): | |
""" | |
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial | |
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a | |
Transformer. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
image_size, patch_size = config.image_size, config.patch_size | |
num_channels, hidden_size = config.num_channels, config.embed_dim | |
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) | |
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.num_patches = num_patches | |
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) | |
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) | |
def maybe_pad(self, pixel_values, height, width): | |
if width % self.patch_size[1] != 0: | |
pad_values = (0, self.patch_size[1] - width % self.patch_size[1]) | |
pixel_values = nn.functional.pad(pixel_values, pad_values) | |
if height % self.patch_size[0] != 0: | |
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0]) | |
pixel_values = nn.functional.pad(pixel_values, pad_values) | |
return pixel_values | |
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: | |
_, num_channels, height, width = pixel_values.shape | |
# pad the input to be divisible by self.patch_size, if needed | |
pixel_values = self.maybe_pad(pixel_values, height, width) | |
embeddings = self.projection(pixel_values) | |
_, _, height, width = embeddings.shape | |
output_dimensions = (height, width) | |
embeddings = embeddings.flatten(2).transpose(1, 2) | |
return embeddings, output_dimensions | |
class SwinPatchMerging(nn.Module): | |
""" | |
Patch Merging Layer. | |
Args: | |
input_resolution (`Tuple[int]`): | |
Resolution of input feature. | |
dim (`int`): | |
Number of input channels. | |
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): | |
Normalization layer class. | |
""" | |
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.dim = dim | |
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
self.norm = norm_layer(4 * dim) | |
def maybe_pad(self, input_feature, height, width): | |
should_pad = (height % 2 == 1) or (width % 2 == 1) | |
if should_pad: | |
pad_values = (0, 0, 0, width % 2, 0, height % 2) | |
input_feature = nn.functional.pad(input_feature, pad_values) | |
return input_feature | |
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: | |
height, width = input_dimensions | |
# `dim` is height * width | |
batch_size, dim, num_channels = input_feature.shape | |
input_feature = input_feature.view(batch_size, height, width, num_channels) | |
# pad input to be disible by width and height, if needed | |
input_feature = self.maybe_pad(input_feature, height, width) | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_0 = input_feature[:, 0::2, 0::2, :] | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_1 = input_feature[:, 1::2, 0::2, :] | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_2 = input_feature[:, 0::2, 1::2, :] | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_3 = input_feature[:, 1::2, 1::2, :] | |
# batch_size height/2 width/2 4*num_channels | |
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) | |
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C | |
input_feature = self.norm(input_feature) | |
input_feature = self.reduction(input_feature) | |
return input_feature | |
# Copied from transformers.models.beit.modeling_beit.drop_path | |
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: | |
""" | |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, | |
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the | |
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the | |
argument. | |
""" | |
if drop_prob == 0.0 or not training: | |
return input | |
keep_prob = 1 - drop_prob | |
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) | |
random_tensor.floor_() # binarize | |
output = input.div(keep_prob) * random_tensor | |
return output | |
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Swin | |
class SwinDropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob: Optional[float] = None) -> None: | |
super().__init__() | |
self.drop_prob = drop_prob | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
return drop_path(hidden_states, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return "p={}".format(self.drop_prob) | |
class SwinSelfAttention(nn.Module): | |
def __init__(self, config, dim, num_heads, window_size): | |
super().__init__() | |
if dim % num_heads != 0: | |
raise ValueError( | |
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" | |
) | |
self.num_attention_heads = num_heads | |
self.attention_head_size = int(dim / num_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.window_size = ( | |
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) | |
) | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) | |
) | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(self.window_size[0]) | |
coords_w = torch.arange(self.window_size[1]) | |
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) | |
coords_flatten = torch.flatten(coords, 1) | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() | |
relative_coords[:, :, 0] += self.window_size[0] - 1 | |
relative_coords[:, :, 1] += self.window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
relative_position_index = relative_coords.sum(-1) | |
self.register_buffer("relative_position_index", relative_position_index) | |
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) | |
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) | |
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
batch_size, dim, num_channels = hidden_states.shape | |
mixed_query_layer = self.query(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] | |
relative_position_bias = relative_position_bias.view( | |
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 | |
) | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() | |
attention_scores = attention_scores + relative_position_bias.unsqueeze(0) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in SwinModel forward() function) | |
mask_shape = attention_mask.shape[0] | |
attention_scores = attention_scores.view( | |
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim | |
) | |
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) | |
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
class SwinSelfOutput(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(dim, dim) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
class SwinAttention(nn.Module): | |
def __init__(self, config, dim, num_heads, window_size): | |
super().__init__() | |
self.self = SwinSelfAttention(config, dim, num_heads, window_size) | |
self.output = SwinSelfOutput(config, dim) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class SwinIntermediate(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class SwinOutput(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
class SwinLayer(nn.Module): | |
def __init__(self, config, dim, input_resolution, num_heads, shift_size=0): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.shift_size = shift_size | |
self.window_size = config.window_size | |
self.input_resolution = input_resolution | |
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
self.attention = SwinAttention(config, dim, num_heads, window_size=self.window_size) | |
self.drop_path = SwinDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() | |
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
self.intermediate = SwinIntermediate(config, dim) | |
self.output = SwinOutput(config, dim) | |
def set_shift_and_window_size(self, input_resolution): | |
if min(input_resolution) <= self.window_size: | |
# if window size is larger than input resolution, we don't partition windows | |
self.shift_size = torch_int(0) | |
self.window_size = ( | |
torch.min(torch.tensor(input_resolution)) if torch.jit.is_tracing() else min(input_resolution) | |
) | |
def get_attn_mask(self, height, width, dtype, device): | |
if self.shift_size > 0: | |
# calculate attention mask for SW-MSA | |
img_mask = torch.zeros((1, height, width, 1), dtype=dtype, device=device) | |
height_slices = ( | |
slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None), | |
) | |
width_slices = ( | |
slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None), | |
) | |
count = 0 | |
for height_slice in height_slices: | |
for width_slice in width_slices: | |
img_mask[:, height_slice, width_slice, :] = count | |
count += 1 | |
mask_windows = window_partition(img_mask, self.window_size) | |
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
else: | |
attn_mask = None | |
return attn_mask | |
def maybe_pad(self, hidden_states, height, width): | |
pad_right = (self.window_size - width % self.window_size) % self.window_size | |
pad_bottom = (self.window_size - height % self.window_size) % self.window_size | |
pad_values = (0, 0, 0, pad_right, 0, pad_bottom) | |
hidden_states = nn.functional.pad(hidden_states, pad_values) | |
return hidden_states, pad_values | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
input_dimensions: Tuple[int, int], | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
always_partition: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
if not always_partition: | |
self.set_shift_and_window_size(input_dimensions) | |
else: | |
pass | |
height, width = input_dimensions | |
batch_size, _, channels = hidden_states.size() | |
shortcut = hidden_states | |
hidden_states = self.layernorm_before(hidden_states) | |
hidden_states = hidden_states.view(batch_size, height, width, channels) | |
# pad hidden_states to multiples of window size | |
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) | |
_, height_pad, width_pad, _ = hidden_states.shape | |
# cyclic shift | |
if self.shift_size > 0: | |
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
else: | |
shifted_hidden_states = hidden_states | |
# partition windows | |
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) | |
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) | |
attn_mask = self.get_attn_mask( | |
height_pad, width_pad, dtype=hidden_states.dtype, device=hidden_states_windows.device | |
) | |
attention_outputs = self.attention( | |
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions | |
) | |
attention_output = attention_outputs[0] | |
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) | |
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
else: | |
attention_windows = shifted_windows | |
was_padded = pad_values[3] > 0 or pad_values[5] > 0 | |
if was_padded: | |
attention_windows = attention_windows[:, :height, :width, :].contiguous() | |
attention_windows = attention_windows.view(batch_size, height * width, channels) | |
hidden_states = shortcut + self.drop_path(attention_windows) | |
layer_output = self.layernorm_after(hidden_states) | |
layer_output = self.intermediate(layer_output) | |
layer_output = hidden_states + self.output(layer_output) | |
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) | |
return layer_outputs | |
class SwinStage(nn.Module): | |
def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample): | |
super().__init__() | |
self.config = config | |
self.dim = dim | |
self.blocks = nn.ModuleList( | |
[ | |
SwinLayer( | |
config=config, | |
dim=dim, | |
input_resolution=input_resolution, | |
num_heads=num_heads, | |
shift_size=0 if (i % 2 == 0) else config.window_size // 2, | |
) | |
for i in range(depth) | |
] | |
) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) | |
else: | |
self.downsample = None | |
self.pointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
input_dimensions: Tuple[int, int], | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
always_partition: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
height, width = input_dimensions | |
for i, layer_module in enumerate(self.blocks): | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
layer_outputs = layer_module( | |
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition | |
) | |
hidden_states = layer_outputs[0] | |
hidden_states_before_downsampling = hidden_states | |
if self.downsample is not None: | |
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 | |
output_dimensions = (height, width, height_downsampled, width_downsampled) | |
hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions) | |
else: | |
output_dimensions = (height, width, height, width) | |
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) | |
if output_attentions: | |
stage_outputs += layer_outputs[1:] | |
return stage_outputs | |
class SwinEncoder(nn.Module): | |
def __init__(self, config, grid_size): | |
super().__init__() | |
self.num_layers = len(config.depths) | |
self.config = config | |
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] | |
self.layers = nn.ModuleList( | |
[ | |
SwinStage( | |
config=config, | |
dim=int(config.embed_dim * 2**i_layer), | |
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)), | |
depth=config.depths[i_layer], | |
num_heads=config.num_heads[i_layer], | |
drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], | |
downsample=SwinPatchMerging if (i_layer < self.num_layers - 1) else None, | |
) | |
for i_layer in range(self.num_layers) | |
] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
input_dimensions: Tuple[int, int], | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
output_hidden_states: Optional[bool] = False, | |
output_hidden_states_before_downsampling: Optional[bool] = False, | |
always_partition: Optional[bool] = False, | |
return_dict: Optional[bool] = True, | |
) -> Union[Tuple, SwinEncoderOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_reshaped_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
if output_hidden_states: | |
batch_size, _, hidden_size = hidden_states.shape | |
# rearrange b (h w) c -> b c h w | |
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) | |
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
for i, layer_module in enumerate(self.layers): | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
input_dimensions, | |
layer_head_mask, | |
output_attentions, | |
always_partition, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition | |
) | |
hidden_states = layer_outputs[0] | |
hidden_states_before_downsampling = layer_outputs[1] | |
output_dimensions = layer_outputs[2] | |
input_dimensions = (output_dimensions[-2], output_dimensions[-1]) | |
if output_hidden_states and output_hidden_states_before_downsampling: | |
batch_size, _, hidden_size = hidden_states_before_downsampling.shape | |
# rearrange b (h w) c -> b c h w | |
# here we use the original (not downsampled) height and width | |
reshaped_hidden_state = hidden_states_before_downsampling.view( | |
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size | |
) | |
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states_before_downsampling,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
elif output_hidden_states and not output_hidden_states_before_downsampling: | |
batch_size, _, hidden_size = hidden_states.shape | |
# rearrange b (h w) c -> b c h w | |
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) | |
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
if output_attentions: | |
all_self_attentions += layer_outputs[3:] | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return SwinEncoderOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
reshaped_hidden_states=all_reshaped_hidden_states, | |
) | |
class SwinPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = SwinConfig | |
base_model_prefix = "swin" | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["SwinStage"] | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
SWIN_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`SwinConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
SWIN_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] | |
for details. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): | |
Whether to interpolate the pre-trained position encodings. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class SwinModel(SwinPreTrainedModel): | |
def __init__(self, config, add_pooling_layer=True, use_mask_token=False): | |
super().__init__(config) | |
self.config = config | |
self.num_layers = len(config.depths) | |
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1)) | |
self.embeddings = SwinEmbeddings(config, use_mask_token=use_mask_token) | |
self.encoder = SwinEncoder(config, self.embeddings.patch_grid) | |
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps) | |
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.patch_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
interpolate_pos_encoding: bool = False, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SwinModelOutput]: | |
r""" | |
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): | |
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, len(self.config.depths)) | |
embedding_output, input_dimensions = self.embeddings( | |
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
input_dimensions, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
pooled_output = None | |
if self.pooler is not None: | |
pooled_output = self.pooler(sequence_output.transpose(1, 2)) | |
pooled_output = torch.flatten(pooled_output, 1) | |
if not return_dict: | |
output = (sequence_output, pooled_output) + encoder_outputs[1:] | |
return output | |
return SwinModelOutput( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states, | |
) | |
class SwinForMaskedImageModeling(SwinPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.swin = SwinModel(config, add_pooling_layer=False, use_mask_token=True) | |
num_features = int(config.embed_dim * 2 ** (config.num_layers - 1)) | |
self.decoder = nn.Sequential( | |
nn.Conv2d( | |
in_channels=num_features, out_channels=config.encoder_stride**2 * config.num_channels, kernel_size=1 | |
), | |
nn.PixelShuffle(config.encoder_stride), | |
) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
interpolate_pos_encoding: bool = False, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SwinMaskedImageModelingOutput]: | |
r""" | |
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): | |
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoImageProcessor, SwinForMaskedImageModeling | |
>>> import torch | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-base-simmim-window6-192") | |
>>> model = SwinForMaskedImageModeling.from_pretrained("microsoft/swin-base-simmim-window6-192") | |
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 | |
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values | |
>>> # create random boolean mask of shape (batch_size, num_patches) | |
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() | |
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) | |
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction | |
>>> list(reconstructed_pixel_values.shape) | |
[1, 3, 192, 192] | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.swin( | |
pixel_values, | |
bool_masked_pos=bool_masked_pos, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
interpolate_pos_encoding=interpolate_pos_encoding, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
# Reshape to (batch_size, num_channels, height, width) | |
sequence_output = sequence_output.transpose(1, 2) | |
batch_size, num_channels, sequence_length = sequence_output.shape | |
height = width = math.floor(sequence_length**0.5) | |
sequence_output = sequence_output.reshape(batch_size, num_channels, height, width) | |
# Reconstruct pixel values | |
reconstructed_pixel_values = self.decoder(sequence_output) | |
masked_im_loss = None | |
if bool_masked_pos is not None: | |
size = self.config.image_size // self.config.patch_size | |
bool_masked_pos = bool_masked_pos.reshape(-1, size, size) | |
mask = ( | |
bool_masked_pos.repeat_interleave(self.config.patch_size, 1) | |
.repeat_interleave(self.config.patch_size, 2) | |
.unsqueeze(1) | |
.contiguous() | |
) | |
reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") | |
masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels | |
if not return_dict: | |
output = (reconstructed_pixel_values,) + outputs[2:] | |
return ((masked_im_loss,) + output) if masked_im_loss is not None else output | |
return SwinMaskedImageModelingOutput( | |
loss=masked_im_loss, | |
reconstruction=reconstructed_pixel_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
reshaped_hidden_states=outputs.reshaped_hidden_states, | |
) | |
class SwinForImageClassification(SwinPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.swin = SwinModel(config) | |
# Classifier head | |
self.classifier = ( | |
nn.Linear(self.swin.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity() | |
) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
interpolate_pos_encoding: bool = False, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SwinImageClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.swin( | |
pixel_values, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
interpolate_pos_encoding=interpolate_pos_encoding, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SwinImageClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
reshaped_hidden_states=outputs.reshaped_hidden_states, | |
) | |
class SwinBackbone(SwinPreTrainedModel, BackboneMixin): | |
def __init__(self, config: SwinConfig): | |
super().__init__(config) | |
super()._init_backbone(config) | |
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))] | |
self.embeddings = SwinEmbeddings(config) | |
self.encoder = SwinEncoder(config, self.embeddings.patch_grid) | |
# Add layer norms to hidden states of out_features | |
hidden_states_norms = {} | |
for stage, num_channels in zip(self._out_features, self.channels): | |
hidden_states_norms[stage] = nn.LayerNorm(num_channels) | |
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.patch_embeddings | |
def forward( | |
self, | |
pixel_values: torch.Tensor, | |
output_hidden_states: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> BackboneOutput: | |
""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoImageProcessor, AutoBackbone | |
>>> import torch | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224") | |
>>> model = AutoBackbone.from_pretrained( | |
... "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] | |
... ) | |
>>> inputs = processor(image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> feature_maps = outputs.feature_maps | |
>>> list(feature_maps[-1].shape) | |
[1, 768, 7, 7] | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
embedding_output, input_dimensions = self.embeddings(pixel_values) | |
outputs = self.encoder( | |
embedding_output, | |
input_dimensions, | |
head_mask=None, | |
output_attentions=output_attentions, | |
output_hidden_states=True, | |
output_hidden_states_before_downsampling=True, | |
always_partition=True, | |
return_dict=True, | |
) | |
hidden_states = outputs.reshaped_hidden_states | |
feature_maps = () | |
for stage, hidden_state in zip(self.stage_names, hidden_states): | |
if stage in self.out_features: | |
batch_size, num_channels, height, width = hidden_state.shape | |
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous() | |
hidden_state = hidden_state.view(batch_size, height * width, num_channels) | |
hidden_state = self.hidden_states_norms[stage](hidden_state) | |
hidden_state = hidden_state.view(batch_size, height, width, num_channels) | |
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() | |
feature_maps += (hidden_state,) | |
if not return_dict: | |
output = (feature_maps,) | |
if output_hidden_states: | |
output += (outputs.hidden_states,) | |
return output | |
return BackboneOutput( | |
feature_maps=feature_maps, | |
hidden_states=outputs.hidden_states if output_hidden_states else None, | |
attentions=outputs.attentions, | |
) | |