Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/swin2sr
/modeling_swin2sr.py
# coding=utf-8 | |
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch Swin2SR Transformer model.""" | |
import collections.abc | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from ...activations import ACT2FN | |
from ...modeling_outputs import BaseModelOutput, ImageSuperResolutionOutput | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer | |
from ...utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_swin2sr import Swin2SRConfig | |
logger = logging.get_logger(__name__) | |
# General docstring | |
_CONFIG_FOR_DOC = "Swin2SRConfig" | |
# Base docstring | |
_CHECKPOINT_FOR_DOC = "caidas/swin2SR-classical-sr-x2-64" | |
_EXPECTED_OUTPUT_SHAPE = [1, 180, 488, 648] | |
class Swin2SREncoderOutput(ModelOutput): | |
""" | |
Swin2SR encoder's outputs, with potential hidden states and attentions. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
# Copied from transformers.models.swin.modeling_swin.window_partition | |
def window_partition(input_feature, window_size): | |
""" | |
Partitions the given input into windows. | |
""" | |
batch_size, height, width, num_channels = input_feature.shape | |
input_feature = input_feature.view( | |
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels | |
) | |
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) | |
return windows | |
# Copied from transformers.models.swin.modeling_swin.window_reverse | |
def window_reverse(windows, window_size, height, width): | |
""" | |
Merges windows to produce higher resolution features. | |
""" | |
num_channels = windows.shape[-1] | |
windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) | |
windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) | |
return windows | |
# Copied from transformers.models.beit.modeling_beit.drop_path | |
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: | |
""" | |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, | |
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the | |
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the | |
argument. | |
""" | |
if drop_prob == 0.0 or not training: | |
return input | |
keep_prob = 1 - drop_prob | |
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) | |
random_tensor.floor_() # binarize | |
output = input.div(keep_prob) * random_tensor | |
return output | |
# Copied from transformers.models.swin.modeling_swin.SwinDropPath with Swin->Swin2SR | |
class Swin2SRDropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob: Optional[float] = None) -> None: | |
super().__init__() | |
self.drop_prob = drop_prob | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
return drop_path(hidden_states, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return "p={}".format(self.drop_prob) | |
class Swin2SREmbeddings(nn.Module): | |
""" | |
Construct the patch and optional position embeddings. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.patch_embeddings = Swin2SRPatchEmbeddings(config) | |
num_patches = self.patch_embeddings.num_patches | |
if config.use_absolute_embeddings: | |
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim)) | |
else: | |
self.position_embeddings = None | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.window_size = config.window_size | |
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor]: | |
embeddings, output_dimensions = self.patch_embeddings(pixel_values) | |
if self.position_embeddings is not None: | |
embeddings = embeddings + self.position_embeddings | |
embeddings = self.dropout(embeddings) | |
return embeddings, output_dimensions | |
class Swin2SRPatchEmbeddings(nn.Module): | |
def __init__(self, config, normalize_patches=True): | |
super().__init__() | |
num_channels = config.embed_dim | |
image_size, patch_size = config.image_size, config.patch_size | |
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) | |
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) | |
patches_resolution = [image_size[0] // patch_size[0], image_size[1] // patch_size[1]] | |
self.patches_resolution = patches_resolution | |
self.num_patches = patches_resolution[0] * patches_resolution[1] | |
self.projection = nn.Conv2d(num_channels, config.embed_dim, kernel_size=patch_size, stride=patch_size) | |
self.layernorm = nn.LayerNorm(config.embed_dim) if normalize_patches else None | |
def forward(self, embeddings: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: | |
embeddings = self.projection(embeddings) | |
_, _, height, width = embeddings.shape | |
output_dimensions = (height, width) | |
embeddings = embeddings.flatten(2).transpose(1, 2) | |
if self.layernorm is not None: | |
embeddings = self.layernorm(embeddings) | |
return embeddings, output_dimensions | |
class Swin2SRPatchUnEmbeddings(nn.Module): | |
r"""Image to Patch Unembedding""" | |
def __init__(self, config): | |
super().__init__() | |
self.embed_dim = config.embed_dim | |
def forward(self, embeddings, x_size): | |
batch_size, height_width, num_channels = embeddings.shape | |
embeddings = embeddings.transpose(1, 2).view(batch_size, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C | |
return embeddings | |
# Copied from transformers.models.swinv2.modeling_swinv2.Swinv2PatchMerging with Swinv2->Swin2SR | |
class Swin2SRPatchMerging(nn.Module): | |
""" | |
Patch Merging Layer. | |
Args: | |
input_resolution (`Tuple[int]`): | |
Resolution of input feature. | |
dim (`int`): | |
Number of input channels. | |
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): | |
Normalization layer class. | |
""" | |
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.dim = dim | |
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
self.norm = norm_layer(2 * dim) | |
def maybe_pad(self, input_feature, height, width): | |
should_pad = (height % 2 == 1) or (width % 2 == 1) | |
if should_pad: | |
pad_values = (0, 0, 0, width % 2, 0, height % 2) | |
input_feature = nn.functional.pad(input_feature, pad_values) | |
return input_feature | |
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: | |
height, width = input_dimensions | |
# `dim` is height * width | |
batch_size, dim, num_channels = input_feature.shape | |
input_feature = input_feature.view(batch_size, height, width, num_channels) | |
# pad input to be disible by width and height, if needed | |
input_feature = self.maybe_pad(input_feature, height, width) | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_0 = input_feature[:, 0::2, 0::2, :] | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_1 = input_feature[:, 1::2, 0::2, :] | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_2 = input_feature[:, 0::2, 1::2, :] | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_3 = input_feature[:, 1::2, 1::2, :] | |
# [batch_size, height/2 * width/2, 4*num_channels] | |
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) | |
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # [batch_size, height/2 * width/2, 4*C] | |
input_feature = self.reduction(input_feature) | |
input_feature = self.norm(input_feature) | |
return input_feature | |
# Copied from transformers.models.swinv2.modeling_swinv2.Swinv2SelfAttention with Swinv2->Swin2SR | |
class Swin2SRSelfAttention(nn.Module): | |
def __init__(self, config, dim, num_heads, window_size, pretrained_window_size=[0, 0]): | |
super().__init__() | |
if dim % num_heads != 0: | |
raise ValueError( | |
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" | |
) | |
self.num_attention_heads = num_heads | |
self.attention_head_size = int(dim / num_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.window_size = ( | |
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) | |
) | |
self.pretrained_window_size = pretrained_window_size | |
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) | |
# mlp to generate continuous relative position bias | |
self.continuous_position_bias_mlp = nn.Sequential( | |
nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False) | |
) | |
# get relative_coords_table | |
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.int64).float() | |
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.int64).float() | |
relative_coords_table = ( | |
torch.stack(meshgrid([relative_coords_h, relative_coords_w], indexing="ij")) | |
.permute(1, 2, 0) | |
.contiguous() | |
.unsqueeze(0) | |
) # [1, 2*window_height - 1, 2*window_width - 1, 2] | |
if pretrained_window_size[0] > 0: | |
relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1 | |
relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1 | |
elif window_size > 1: | |
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1 | |
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1 | |
relative_coords_table *= 8 # normalize to -8, 8 | |
relative_coords_table = ( | |
torch.sign(relative_coords_table) * torch.log2(torch.abs(relative_coords_table) + 1.0) / math.log2(8) | |
) | |
# set to same dtype as mlp weight | |
relative_coords_table = relative_coords_table.to(next(self.continuous_position_bias_mlp.parameters()).dtype) | |
self.register_buffer("relative_coords_table", relative_coords_table, persistent=False) | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(self.window_size[0]) | |
coords_w = torch.arange(self.window_size[1]) | |
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) | |
coords_flatten = torch.flatten(coords, 1) | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() | |
relative_coords[:, :, 0] += self.window_size[0] - 1 | |
relative_coords[:, :, 1] += self.window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
relative_position_index = relative_coords.sum(-1) | |
self.register_buffer("relative_position_index", relative_position_index, persistent=False) | |
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) | |
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=False) | |
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
batch_size, dim, num_channels = hidden_states.shape | |
mixed_query_layer = self.query(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
# cosine attention | |
attention_scores = nn.functional.normalize(query_layer, dim=-1) @ nn.functional.normalize( | |
key_layer, dim=-1 | |
).transpose(-2, -1) | |
logit_scale = torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() | |
attention_scores = attention_scores * logit_scale | |
relative_position_bias_table = self.continuous_position_bias_mlp(self.relative_coords_table).view( | |
-1, self.num_attention_heads | |
) | |
# [window_height*window_width,window_height*window_width,num_attention_heads] | |
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 | |
) | |
# [num_attention_heads,window_height*window_width,window_height*window_width] | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
relative_position_bias = 16 * torch.sigmoid(relative_position_bias) | |
attention_scores = attention_scores + relative_position_bias.unsqueeze(0) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in Swin2SRModel forward() function) | |
mask_shape = attention_mask.shape[0] | |
attention_scores = attention_scores.view( | |
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim | |
) + attention_mask.unsqueeze(1).unsqueeze(0) | |
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) | |
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->Swin2SR | |
class Swin2SRSelfOutput(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(dim, dim) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.swinv2.modeling_swinv2.Swinv2Attention with Swinv2->Swin2SR | |
class Swin2SRAttention(nn.Module): | |
def __init__(self, config, dim, num_heads, window_size, pretrained_window_size=0): | |
super().__init__() | |
self.self = Swin2SRSelfAttention( | |
config=config, | |
dim=dim, | |
num_heads=num_heads, | |
window_size=window_size, | |
pretrained_window_size=pretrained_window_size | |
if isinstance(pretrained_window_size, collections.abc.Iterable) | |
else (pretrained_window_size, pretrained_window_size), | |
) | |
self.output = Swin2SRSelfOutput(config, dim) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->Swin2SR | |
class Swin2SRIntermediate(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->Swin2SR | |
class Swin2SROutput(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.swinv2.modeling_swinv2.Swinv2Layer with Swinv2->Swin2SR | |
class Swin2SRLayer(nn.Module): | |
def __init__(self, config, dim, input_resolution, num_heads, shift_size=0, pretrained_window_size=0): | |
super().__init__() | |
self.input_resolution = input_resolution | |
window_size, shift_size = self._compute_window_shift( | |
(config.window_size, config.window_size), (shift_size, shift_size) | |
) | |
self.window_size = window_size[0] | |
self.shift_size = shift_size[0] | |
self.attention = Swin2SRAttention( | |
config=config, | |
dim=dim, | |
num_heads=num_heads, | |
window_size=self.window_size, | |
pretrained_window_size=pretrained_window_size | |
if isinstance(pretrained_window_size, collections.abc.Iterable) | |
else (pretrained_window_size, pretrained_window_size), | |
) | |
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
self.drop_path = Swin2SRDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() | |
self.intermediate = Swin2SRIntermediate(config, dim) | |
self.output = Swin2SROutput(config, dim) | |
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
def _compute_window_shift(self, target_window_size, target_shift_size) -> Tuple[Tuple[int, int], Tuple[int, int]]: | |
window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)] | |
shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)] | |
return window_size, shift_size | |
def get_attn_mask(self, height, width, dtype): | |
if self.shift_size > 0: | |
# calculate attention mask for shifted window multihead self attention | |
img_mask = torch.zeros((1, height, width, 1), dtype=dtype) | |
height_slices = ( | |
slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None), | |
) | |
width_slices = ( | |
slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None), | |
) | |
count = 0 | |
for height_slice in height_slices: | |
for width_slice in width_slices: | |
img_mask[:, height_slice, width_slice, :] = count | |
count += 1 | |
mask_windows = window_partition(img_mask, self.window_size) | |
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
else: | |
attn_mask = None | |
return attn_mask | |
def maybe_pad(self, hidden_states, height, width): | |
pad_right = (self.window_size - width % self.window_size) % self.window_size | |
pad_bottom = (self.window_size - height % self.window_size) % self.window_size | |
pad_values = (0, 0, 0, pad_right, 0, pad_bottom) | |
hidden_states = nn.functional.pad(hidden_states, pad_values) | |
return hidden_states, pad_values | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
input_dimensions: Tuple[int, int], | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
height, width = input_dimensions | |
batch_size, _, channels = hidden_states.size() | |
shortcut = hidden_states | |
# pad hidden_states to multiples of window size | |
hidden_states = hidden_states.view(batch_size, height, width, channels) | |
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) | |
_, height_pad, width_pad, _ = hidden_states.shape | |
# cyclic shift | |
if self.shift_size > 0: | |
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
else: | |
shifted_hidden_states = hidden_states | |
# partition windows | |
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) | |
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) | |
attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype) | |
if attn_mask is not None: | |
attn_mask = attn_mask.to(hidden_states_windows.device) | |
attention_outputs = self.attention( | |
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions | |
) | |
attention_output = attention_outputs[0] | |
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) | |
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
else: | |
attention_windows = shifted_windows | |
was_padded = pad_values[3] > 0 or pad_values[5] > 0 | |
if was_padded: | |
attention_windows = attention_windows[:, :height, :width, :].contiguous() | |
attention_windows = attention_windows.view(batch_size, height * width, channels) | |
hidden_states = self.layernorm_before(attention_windows) | |
hidden_states = shortcut + self.drop_path(hidden_states) | |
layer_output = self.intermediate(hidden_states) | |
layer_output = self.output(layer_output) | |
layer_output = hidden_states + self.drop_path(self.layernorm_after(layer_output)) | |
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) | |
return layer_outputs | |
class Swin2SRStage(nn.Module): | |
""" | |
This corresponds to the Residual Swin Transformer Block (RSTB) in the original implementation. | |
""" | |
def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, pretrained_window_size=0): | |
super().__init__() | |
self.config = config | |
self.dim = dim | |
self.layers = nn.ModuleList( | |
[ | |
Swin2SRLayer( | |
config=config, | |
dim=dim, | |
input_resolution=input_resolution, | |
num_heads=num_heads, | |
shift_size=0 if (i % 2 == 0) else config.window_size // 2, | |
pretrained_window_size=pretrained_window_size, | |
) | |
for i in range(depth) | |
] | |
) | |
if config.resi_connection == "1conv": | |
self.conv = nn.Conv2d(dim, dim, 3, 1, 1) | |
elif config.resi_connection == "3conv": | |
# to save parameters and memory | |
self.conv = nn.Sequential( | |
nn.Conv2d(dim, dim // 4, 3, 1, 1), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv2d(dim // 4, dim, 3, 1, 1), | |
) | |
self.patch_embed = Swin2SRPatchEmbeddings(config, normalize_patches=False) | |
self.patch_unembed = Swin2SRPatchUnEmbeddings(config) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
input_dimensions: Tuple[int, int], | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
residual = hidden_states | |
height, width = input_dimensions | |
for i, layer_module in enumerate(self.layers): | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
layer_outputs = layer_module(hidden_states, input_dimensions, layer_head_mask, output_attentions) | |
hidden_states = layer_outputs[0] | |
output_dimensions = (height, width, height, width) | |
hidden_states = self.patch_unembed(hidden_states, input_dimensions) | |
hidden_states = self.conv(hidden_states) | |
hidden_states, _ = self.patch_embed(hidden_states) | |
hidden_states = hidden_states + residual | |
stage_outputs = (hidden_states, output_dimensions) | |
if output_attentions: | |
stage_outputs += layer_outputs[1:] | |
return stage_outputs | |
class Swin2SREncoder(nn.Module): | |
def __init__(self, config, grid_size): | |
super().__init__() | |
self.num_stages = len(config.depths) | |
self.config = config | |
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] | |
self.stages = nn.ModuleList( | |
[ | |
Swin2SRStage( | |
config=config, | |
dim=config.embed_dim, | |
input_resolution=(grid_size[0], grid_size[1]), | |
depth=config.depths[stage_idx], | |
num_heads=config.num_heads[stage_idx], | |
drop_path=dpr[sum(config.depths[:stage_idx]) : sum(config.depths[: stage_idx + 1])], | |
pretrained_window_size=0, | |
) | |
for stage_idx in range(self.num_stages) | |
] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
input_dimensions: Tuple[int, int], | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
output_hidden_states: Optional[bool] = False, | |
return_dict: Optional[bool] = True, | |
) -> Union[Tuple, Swin2SREncoderOutput]: | |
all_input_dimensions = () | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
for i, stage_module in enumerate(self.stages): | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
stage_module.__call__, hidden_states, input_dimensions, layer_head_mask, output_attentions | |
) | |
else: | |
layer_outputs = stage_module(hidden_states, input_dimensions, layer_head_mask, output_attentions) | |
hidden_states = layer_outputs[0] | |
output_dimensions = layer_outputs[1] | |
input_dimensions = (output_dimensions[-2], output_dimensions[-1]) | |
all_input_dimensions += (input_dimensions,) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if output_attentions: | |
all_self_attentions += layer_outputs[2:] | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return Swin2SREncoderOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class Swin2SRPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = Swin2SRConfig | |
base_model_prefix = "swin2sr" | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
torch.nn.init.trunc_normal_(module.weight.data, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
SWIN2SR_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`Swin2SRConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
SWIN2SR_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
[`Swin2SRImageProcessor.__call__`] for details. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class Swin2SRModel(Swin2SRPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
if config.num_channels == 3 and config.num_channels_out == 3: | |
rgb_mean = (0.4488, 0.4371, 0.4040) | |
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) | |
else: | |
self.mean = torch.zeros(1, 1, 1, 1) | |
self.img_range = config.img_range | |
self.first_convolution = nn.Conv2d(config.num_channels, config.embed_dim, 3, 1, 1) | |
self.embeddings = Swin2SREmbeddings(config) | |
self.encoder = Swin2SREncoder(config, grid_size=self.embeddings.patch_embeddings.patches_resolution) | |
self.layernorm = nn.LayerNorm(config.embed_dim, eps=config.layer_norm_eps) | |
self.patch_unembed = Swin2SRPatchUnEmbeddings(config) | |
self.conv_after_body = nn.Conv2d(config.embed_dim, config.embed_dim, 3, 1, 1) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.patch_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def pad_and_normalize(self, pixel_values): | |
_, _, height, width = pixel_values.size() | |
# 1. pad | |
window_size = self.config.window_size | |
modulo_pad_height = (window_size - height % window_size) % window_size | |
modulo_pad_width = (window_size - width % window_size) % window_size | |
pixel_values = nn.functional.pad(pixel_values, (0, modulo_pad_width, 0, modulo_pad_height), "reflect") | |
# 2. normalize | |
self.mean = self.mean.type_as(pixel_values) | |
pixel_values = (pixel_values - self.mean) * self.img_range | |
return pixel_values | |
def forward( | |
self, | |
pixel_values: torch.FloatTensor, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, len(self.config.depths)) | |
_, _, height, width = pixel_values.shape | |
# some preprocessing: padding + normalization | |
pixel_values = self.pad_and_normalize(pixel_values) | |
embeddings = self.first_convolution(pixel_values) | |
embedding_output, input_dimensions = self.embeddings(embeddings) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
input_dimensions, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
sequence_output = self.patch_unembed(sequence_output, (height, width)) | |
sequence_output = self.conv_after_body(sequence_output) + embeddings | |
if not return_dict: | |
output = (sequence_output,) + encoder_outputs[1:] | |
return output | |
return BaseModelOutput( | |
last_hidden_state=sequence_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class Upsample(nn.Module): | |
"""Upsample module. | |
Args: | |
scale (`int`): | |
Scale factor. Supported scales: 2^n and 3. | |
num_features (`int`): | |
Channel number of intermediate features. | |
""" | |
def __init__(self, scale, num_features): | |
super().__init__() | |
self.scale = scale | |
if (scale & (scale - 1)) == 0: | |
# scale = 2^n | |
for i in range(int(math.log(scale, 2))): | |
self.add_module(f"convolution_{i}", nn.Conv2d(num_features, 4 * num_features, 3, 1, 1)) | |
self.add_module(f"pixelshuffle_{i}", nn.PixelShuffle(2)) | |
elif scale == 3: | |
self.convolution = nn.Conv2d(num_features, 9 * num_features, 3, 1, 1) | |
self.pixelshuffle = nn.PixelShuffle(3) | |
else: | |
raise ValueError(f"Scale {scale} is not supported. Supported scales: 2^n and 3.") | |
def forward(self, hidden_state): | |
if (self.scale & (self.scale - 1)) == 0: | |
for i in range(int(math.log(self.scale, 2))): | |
hidden_state = self.__getattr__(f"convolution_{i}")(hidden_state) | |
hidden_state = self.__getattr__(f"pixelshuffle_{i}")(hidden_state) | |
elif self.scale == 3: | |
hidden_state = self.convolution(hidden_state) | |
hidden_state = self.pixelshuffle(hidden_state) | |
return hidden_state | |
class UpsampleOneStep(nn.Module): | |
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) | |
Used in lightweight SR to save parameters. | |
Args: | |
scale (int): | |
Scale factor. Supported scales: 2^n and 3. | |
in_channels (int): | |
Channel number of intermediate features. | |
out_channels (int): | |
Channel number of output features. | |
""" | |
def __init__(self, scale, in_channels, out_channels): | |
super().__init__() | |
self.conv = nn.Conv2d(in_channels, (scale**2) * out_channels, 3, 1, 1) | |
self.pixel_shuffle = nn.PixelShuffle(scale) | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.pixel_shuffle(x) | |
return x | |
class PixelShuffleUpsampler(nn.Module): | |
def __init__(self, config, num_features): | |
super().__init__() | |
self.conv_before_upsample = nn.Conv2d(config.embed_dim, num_features, 3, 1, 1) | |
self.activation = nn.LeakyReLU(inplace=True) | |
self.upsample = Upsample(config.upscale, num_features) | |
self.final_convolution = nn.Conv2d(num_features, config.num_channels_out, 3, 1, 1) | |
def forward(self, sequence_output): | |
x = self.conv_before_upsample(sequence_output) | |
x = self.activation(x) | |
x = self.upsample(x) | |
x = self.final_convolution(x) | |
return x | |
class NearestConvUpsampler(nn.Module): | |
def __init__(self, config, num_features): | |
super().__init__() | |
if config.upscale != 4: | |
raise ValueError("The nearest+conv upsampler only supports an upscale factor of 4 at the moment.") | |
self.conv_before_upsample = nn.Conv2d(config.embed_dim, num_features, 3, 1, 1) | |
self.activation = nn.LeakyReLU(inplace=True) | |
self.conv_up1 = nn.Conv2d(num_features, num_features, 3, 1, 1) | |
self.conv_up2 = nn.Conv2d(num_features, num_features, 3, 1, 1) | |
self.conv_hr = nn.Conv2d(num_features, num_features, 3, 1, 1) | |
self.final_convolution = nn.Conv2d(num_features, config.num_channels_out, 3, 1, 1) | |
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) | |
def forward(self, sequence_output): | |
sequence_output = self.conv_before_upsample(sequence_output) | |
sequence_output = self.activation(sequence_output) | |
sequence_output = self.lrelu( | |
self.conv_up1(torch.nn.functional.interpolate(sequence_output, scale_factor=2, mode="nearest")) | |
) | |
sequence_output = self.lrelu( | |
self.conv_up2(torch.nn.functional.interpolate(sequence_output, scale_factor=2, mode="nearest")) | |
) | |
reconstruction = self.final_convolution(self.lrelu(self.conv_hr(sequence_output))) | |
return reconstruction | |
class PixelShuffleAuxUpsampler(nn.Module): | |
def __init__(self, config, num_features): | |
super().__init__() | |
self.upscale = config.upscale | |
self.conv_bicubic = nn.Conv2d(config.num_channels, num_features, 3, 1, 1) | |
self.conv_before_upsample = nn.Conv2d(config.embed_dim, num_features, 3, 1, 1) | |
self.activation = nn.LeakyReLU(inplace=True) | |
self.conv_aux = nn.Conv2d(num_features, config.num_channels, 3, 1, 1) | |
self.conv_after_aux = nn.Sequential(nn.Conv2d(3, num_features, 3, 1, 1), nn.LeakyReLU(inplace=True)) | |
self.upsample = Upsample(config.upscale, num_features) | |
self.final_convolution = nn.Conv2d(num_features, config.num_channels_out, 3, 1, 1) | |
def forward(self, sequence_output, bicubic, height, width): | |
bicubic = self.conv_bicubic(bicubic) | |
sequence_output = self.conv_before_upsample(sequence_output) | |
sequence_output = self.activation(sequence_output) | |
aux = self.conv_aux(sequence_output) | |
sequence_output = self.conv_after_aux(aux) | |
sequence_output = ( | |
self.upsample(sequence_output)[:, :, : height * self.upscale, : width * self.upscale] | |
+ bicubic[:, :, : height * self.upscale, : width * self.upscale] | |
) | |
reconstruction = self.final_convolution(sequence_output) | |
return reconstruction, aux | |
class Swin2SRForImageSuperResolution(Swin2SRPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.swin2sr = Swin2SRModel(config) | |
self.upsampler = config.upsampler | |
self.upscale = config.upscale | |
# Upsampler | |
num_features = 64 | |
if self.upsampler == "pixelshuffle": | |
self.upsample = PixelShuffleUpsampler(config, num_features) | |
elif self.upsampler == "pixelshuffle_aux": | |
self.upsample = PixelShuffleAuxUpsampler(config, num_features) | |
elif self.upsampler == "pixelshuffledirect": | |
# for lightweight SR (to save parameters) | |
self.upsample = UpsampleOneStep(config.upscale, config.embed_dim, config.num_channels_out) | |
elif self.upsampler == "nearest+conv": | |
# for real-world SR (less artifacts) | |
self.upsample = NearestConvUpsampler(config, num_features) | |
else: | |
# for image denoising and JPEG compression artifact reduction | |
self.final_convolution = nn.Conv2d(config.embed_dim, config.num_channels_out, 3, 1, 1) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, ImageSuperResolutionOutput]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> import torch | |
>>> import numpy as np | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution | |
>>> processor = AutoImageProcessor.from_pretrained("caidas/swin2SR-classical-sr-x2-64") | |
>>> model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64") | |
>>> url = "https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/butterfly.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> # prepare image for the model | |
>>> inputs = processor(image, return_tensors="pt") | |
>>> # forward pass | |
>>> with torch.no_grad(): | |
... outputs = model(**inputs) | |
>>> output = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy() | |
>>> output = np.moveaxis(output, source=0, destination=-1) | |
>>> output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 | |
>>> # you can visualize `output` with `Image.fromarray` | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
loss = None | |
if labels is not None: | |
raise NotImplementedError("Training is not supported at the moment") | |
height, width = pixel_values.shape[2:] | |
if self.config.upsampler == "pixelshuffle_aux": | |
bicubic = nn.functional.interpolate( | |
pixel_values, | |
size=(height * self.upscale, width * self.upscale), | |
mode="bicubic", | |
align_corners=False, | |
) | |
outputs = self.swin2sr( | |
pixel_values, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
if self.upsampler in ["pixelshuffle", "pixelshuffledirect", "nearest+conv"]: | |
reconstruction = self.upsample(sequence_output) | |
elif self.upsampler == "pixelshuffle_aux": | |
reconstruction, aux = self.upsample(sequence_output, bicubic, height, width) | |
aux = aux / self.swin2sr.img_range + self.swin2sr.mean | |
else: | |
reconstruction = pixel_values + self.final_convolution(sequence_output) | |
reconstruction = reconstruction / self.swin2sr.img_range + self.swin2sr.mean | |
reconstruction = reconstruction[:, :, : height * self.upscale, : width * self.upscale] | |
if not return_dict: | |
output = (reconstruction,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return ImageSuperResolutionOutput( | |
loss=loss, | |
reconstruction=reconstruction, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |