Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/tapas
/configuration_tapas.py
# coding=utf-8 | |
# Copyright 2020 Google Research and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
TAPAS configuration. Based on the BERT configuration with added parameters. | |
Hyperparameters are taken from run_task_main.py and hparam_utils.py of the original implementation. URLS: | |
- https://github.com/google-research/tapas/blob/master/tapas/run_task_main.py | |
- https://github.com/google-research/tapas/blob/master/tapas/utils/hparam_utils.py | |
""" | |
from ...configuration_utils import PretrainedConfig | |
class TapasConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`TapasModel`]. It is used to instantiate a TAPAS | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the TAPAS | |
[google/tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa) architecture. | |
Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Hyperparameters additional to BERT are taken from run_task_main.py and hparam_utils.py of the original | |
implementation. Original implementation available at https://github.com/google-research/tapas/tree/master. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the TAPAS model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`TapasModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"swish"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 1024): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_sizes (`List[int]`, *optional*, defaults to `[3, 256, 256, 2, 256, 256, 10]`): | |
The vocabulary sizes of the `token_type_ids` passed when calling [`TapasModel`]. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
positive_label_weight (`float`, *optional*, defaults to 10.0): | |
Weight for positive labels. | |
num_aggregation_labels (`int`, *optional*, defaults to 0): | |
The number of aggregation operators to predict. | |
aggregation_loss_weight (`float`, *optional*, defaults to 1.0): | |
Importance weight for the aggregation loss. | |
use_answer_as_supervision (`bool`, *optional*): | |
Whether to use the answer as the only supervision for aggregation examples. | |
answer_loss_importance (`float`, *optional*, defaults to 1.0): | |
Importance weight for the regression loss. | |
use_normalized_answer_loss (`bool`, *optional*, defaults to `False`): | |
Whether to normalize the answer loss by the maximum of the predicted and expected value. | |
huber_loss_delta (`float`, *optional*): | |
Delta parameter used to calculate the regression loss. | |
temperature (`float`, *optional*, defaults to 1.0): | |
Value used to control (OR change) the skewness of cell logits probabilities. | |
aggregation_temperature (`float`, *optional*, defaults to 1.0): | |
Scales aggregation logits to control the skewness of probabilities. | |
use_gumbel_for_cells (`bool`, *optional*, defaults to `False`): | |
Whether to apply Gumbel-Softmax to cell selection. | |
use_gumbel_for_aggregation (`bool`, *optional*, defaults to `False`): | |
Whether to apply Gumbel-Softmax to aggregation selection. | |
average_approximation_function (`string`, *optional*, defaults to `"ratio"`): | |
Method to calculate the expected average of cells in the weak supervision case. One of `"ratio"`, | |
`"first_order"` or `"second_order"`. | |
cell_selection_preference (`float`, *optional*): | |
Preference for cell selection in ambiguous cases. Only applicable in case of weak supervision for | |
aggregation (WTQ, WikiSQL). If the total mass of the aggregation probabilities (excluding the "NONE" | |
operator) is higher than this hyperparameter, then aggregation is predicted for an example. | |
answer_loss_cutoff (`float`, *optional*): | |
Ignore examples with answer loss larger than cutoff. | |
max_num_rows (`int`, *optional*, defaults to 64): | |
Maximum number of rows. | |
max_num_columns (`int`, *optional*, defaults to 32): | |
Maximum number of columns. | |
average_logits_per_cell (`bool`, *optional*, defaults to `False`): | |
Whether to average logits per cell. | |
select_one_column (`bool`, *optional*, defaults to `True`): | |
Whether to constrain the model to only select cells from a single column. | |
allow_empty_column_selection (`bool`, *optional*, defaults to `False`): | |
Whether to allow not to select any column. | |
init_cell_selection_weights_to_zero (`bool`, *optional*, defaults to `False`): | |
Whether to initialize cell selection weights to 0 so that the initial probabilities are 50%. | |
reset_position_index_per_cell (`bool`, *optional*, defaults to `True`): | |
Whether to restart position indexes at every cell (i.e. use relative position embeddings). | |
disable_per_token_loss (`bool`, *optional*, defaults to `False`): | |
Whether to disable any (strong or weak) supervision on cells. | |
aggregation_labels (`Dict[int, label]`, *optional*): | |
The aggregation labels used to aggregate the results. For example, the WTQ models have the following | |
aggregation labels: `{0: "NONE", 1: "SUM", 2: "AVERAGE", 3: "COUNT"}` | |
no_aggregation_label_index (`int`, *optional*): | |
If the aggregation labels are defined and one of these labels represents "No aggregation", this should be | |
set to its index. For example, the WTQ models have the "NONE" aggregation label at index 0, so that value | |
should be set to 0 for these models. | |
Example: | |
```python | |
>>> from transformers import TapasModel, TapasConfig | |
>>> # Initializing a default (SQA) Tapas configuration | |
>>> configuration = TapasConfig() | |
>>> # Initializing a model from the configuration | |
>>> model = TapasModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "tapas" | |
def __init__( | |
self, | |
vocab_size=30522, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=1024, | |
type_vocab_sizes=[3, 256, 256, 2, 256, 256, 10], | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
positive_label_weight=10.0, | |
num_aggregation_labels=0, | |
aggregation_loss_weight=1.0, | |
use_answer_as_supervision=None, | |
answer_loss_importance=1.0, | |
use_normalized_answer_loss=False, | |
huber_loss_delta=None, | |
temperature=1.0, | |
aggregation_temperature=1.0, | |
use_gumbel_for_cells=False, | |
use_gumbel_for_aggregation=False, | |
average_approximation_function="ratio", | |
cell_selection_preference=None, | |
answer_loss_cutoff=None, | |
max_num_rows=64, | |
max_num_columns=32, | |
average_logits_per_cell=False, | |
select_one_column=True, | |
allow_empty_column_selection=False, | |
init_cell_selection_weights_to_zero=False, | |
reset_position_index_per_cell=True, | |
disable_per_token_loss=False, | |
aggregation_labels=None, | |
no_aggregation_label_index=None, | |
**kwargs, | |
): | |
super().__init__(pad_token_id=pad_token_id, **kwargs) | |
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_sizes = type_vocab_sizes | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
# Fine-tuning task hyperparameters | |
self.positive_label_weight = positive_label_weight | |
self.num_aggregation_labels = num_aggregation_labels | |
self.aggregation_loss_weight = aggregation_loss_weight | |
self.use_answer_as_supervision = use_answer_as_supervision | |
self.answer_loss_importance = answer_loss_importance | |
self.use_normalized_answer_loss = use_normalized_answer_loss | |
self.huber_loss_delta = huber_loss_delta | |
self.temperature = temperature | |
self.aggregation_temperature = aggregation_temperature | |
self.use_gumbel_for_cells = use_gumbel_for_cells | |
self.use_gumbel_for_aggregation = use_gumbel_for_aggregation | |
self.average_approximation_function = average_approximation_function | |
self.cell_selection_preference = cell_selection_preference | |
self.answer_loss_cutoff = answer_loss_cutoff | |
self.max_num_rows = max_num_rows | |
self.max_num_columns = max_num_columns | |
self.average_logits_per_cell = average_logits_per_cell | |
self.select_one_column = select_one_column | |
self.allow_empty_column_selection = allow_empty_column_selection | |
self.init_cell_selection_weights_to_zero = init_cell_selection_weights_to_zero | |
self.reset_position_index_per_cell = reset_position_index_per_cell | |
self.disable_per_token_loss = disable_per_token_loss | |
# Aggregation hyperparameters | |
self.aggregation_labels = aggregation_labels | |
self.no_aggregation_label_index = no_aggregation_label_index | |
if isinstance(self.aggregation_labels, dict): | |
self.aggregation_labels = {int(k): v for k, v in aggregation_labels.items()} | |