Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/tvp
/configuration_tvp.py
# coding=utf-8 | |
# Copyright 2023 The Intel AIA Team Authors, and HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License=, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing=, software | |
# distributed under the License is distributed on an "AS IS" BASIS=, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TVP model configuration""" | |
import copy | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
from ...utils.backbone_utils import verify_backbone_config_arguments | |
from ..auto import CONFIG_MAPPING | |
logger = logging.get_logger(__name__) | |
class TvpConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`TvpModel`]. It is used to instantiate an Tvp | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the Tvp | |
[Intel/tvp-base](https://huggingface.co/Intel/tvp-base) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
backbone_config (`PretrainedConfig` or `dict`, *optional*): | |
The configuration of the backbone model. | |
backbone (`str`, *optional*): | |
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this | |
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` | |
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. | |
use_pretrained_backbone (`bool`, *optional*, defaults to `False`): | |
Whether to use pretrained weights for the backbone. | |
use_timm_backbone (`bool`, *optional*, defaults to `False`): | |
Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers | |
library. | |
backbone_kwargs (`dict`, *optional*): | |
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint | |
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. | |
distance_loss_weight (`float`, *optional*, defaults to 1.0): | |
The weight of distance loss. | |
duration_loss_weight (`float`, *optional*, defaults to 0.1): | |
The weight of duration loss. | |
visual_prompter_type (`str`, *optional*, defaults to `"framepad"`): | |
Visual prompt type. The type of padding. Framepad means padding on each frame. Should be one of "framepad" | |
or "framedownpad" | |
visual_prompter_apply (`str`, *optional*, defaults to `"replace"`): | |
The way of applying visual prompt. Replace means use the value of prompt to change the original value in | |
visual inputs. Should be one of "replace", or "add", or "remove". | |
visual_prompt_size (`int`, *optional*, defaults to 96): | |
The size of visual prompt. | |
max_img_size (`int`, *optional*, defaults to 448): | |
The maximum size of frame. | |
num_frames (`int`, *optional*, defaults to 48): | |
The number of frames extracted from a video. | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the Tvp text model. Defines the number of different tokens that can be represented by | |
the `inputs_ids` passed when calling [`TvpModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
max_grid_col_position_embeddings (`int`, *optional*, defaults to 100): | |
The largest number of horizontal patches from a video frame. | |
max_grid_row_position_embeddings (`int`, *optional*, defaults to 100): | |
The largest number of vertical patches from a video frame. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability of hidden layers. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability of attention layers. | |
""" | |
model_type = "tvp" | |
def __init__( | |
self, | |
backbone_config=None, | |
backbone=None, | |
use_pretrained_backbone=False, | |
use_timm_backbone=False, | |
backbone_kwargs=None, | |
distance_loss_weight=1.0, | |
duration_loss_weight=0.1, | |
visual_prompter_type="framepad", | |
visual_prompter_apply="replace", | |
visual_prompt_size=96, | |
max_img_size=448, | |
num_frames=48, | |
vocab_size=30522, | |
hidden_size=768, | |
intermediate_size=3072, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
max_position_embeddings=512, | |
max_grid_col_position_embeddings=100, | |
max_grid_row_position_embeddings=100, | |
hidden_dropout_prob=0.1, | |
hidden_act="gelu", | |
layer_norm_eps=1e-12, | |
initializer_range=0.02, | |
attention_probs_dropout_prob=0.1, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
if backbone_config is None and backbone is None: | |
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") | |
backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"]) | |
elif isinstance(backbone_config, dict): | |
backbone_model_type = backbone_config.get("model_type") | |
config_class = CONFIG_MAPPING[backbone_model_type] | |
backbone_config = config_class.from_dict(backbone_config) | |
verify_backbone_config_arguments( | |
use_timm_backbone=use_timm_backbone, | |
use_pretrained_backbone=use_pretrained_backbone, | |
backbone=backbone, | |
backbone_config=backbone_config, | |
backbone_kwargs=backbone_kwargs, | |
) | |
self.backbone_config = backbone_config | |
self.backbone = backbone | |
self.use_pretrained_backbone = use_pretrained_backbone | |
self.use_timm_backbone = use_timm_backbone | |
self.backbone_kwargs = backbone_kwargs | |
self.distance_loss_weight = distance_loss_weight | |
self.duration_loss_weight = duration_loss_weight | |
self.visual_prompter_type = visual_prompter_type | |
self.visual_prompter_apply = visual_prompter_apply | |
self.visual_prompt_size = visual_prompt_size | |
self.max_img_size = max_img_size | |
self.num_frames = num_frames | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.max_position_embeddings = max_position_embeddings | |
self.max_grid_col_position_embeddings = max_grid_col_position_embeddings | |
self.max_grid_row_position_embeddings = max_grid_row_position_embeddings | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
def from_backbone_config(cls, backbone_config: PretrainedConfig, **kwargs): | |
"""Instantiate a [`TvpConfig`] (or a derived class) from a pre-trained backbone model configuration. | |
Args: | |
backbone_config ([`PretrainedConfig`]): | |
The backbone configuration. | |
Returns: | |
[`TvpConfig`]: An instance of a configuration object | |
""" | |
return cls(backbone_config=backbone_config, **kwargs) | |
def to_dict(self): | |
""" | |
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. | |
Returns: | |
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | |
""" | |
output = copy.deepcopy(self.__dict__) | |
if output["backbone_config"] is not None: | |
output["backbone_config"] = self.backbone_config.to_dict() | |
output["model_type"] = self.__class__.model_type | |
return output | |