Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/tvp
/processing_tvp.py
# coding=utf-8 | |
# Copyright 2023 The Intel AIA Team Authors, and HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License=, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing=, software | |
# distributed under the License is distributed on an "AS IS" BASIS=, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processor class for TVP. | |
""" | |
from ...processing_utils import ProcessorMixin | |
from ...tokenization_utils_base import BatchEncoding | |
class TvpProcessor(ProcessorMixin): | |
r""" | |
Constructs an TVP processor which wraps a TVP image processor and a Bert tokenizer into a single processor. | |
[`TvpProcessor`] offers all the functionalities of [`TvpImageProcessor`] and [`BertTokenizerFast`]. See the | |
[`~TvpProcessor.__call__`] and [`~TvpProcessor.decode`] for more information. | |
Args: | |
image_processor ([`TvpImageProcessor`], *optional*): | |
The image processor is a required input. | |
tokenizer ([`BertTokenizerFast`], *optional*): | |
The tokenizer is a required input. | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
image_processor_class = "TvpImageProcessor" | |
tokenizer_class = ("BertTokenizer", "BertTokenizerFast") | |
def __init__(self, image_processor=None, tokenizer=None, **kwargs): | |
if image_processor is None: | |
raise ValueError("You need to specify an `image_processor`.") | |
if tokenizer is None: | |
raise ValueError("You need to specify a `tokenizer`.") | |
super().__init__(image_processor, tokenizer) | |
def __call__(self, text=None, videos=None, return_tensors=None, **kwargs): | |
""" | |
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | |
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode | |
the text. To prepare the image(s), this method forwards the `videos` and `kwargs` arguments to | |
TvpImageProcessor's [`~TvpImageProcessor.__call__`] if `videos` is not `None`. Please refer to the doctsring of | |
the above two methods for more information. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
videos (`List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, `List[List[PIL.Image.Image]]`, `List[List[np.ndarrray]]`,: | |
`List[List[torch.Tensor]]`): The video or batch of videos to be prepared. Each video should be a list | |
of frames, which can be either PIL images or NumPy arrays. In case of NumPy arrays/PyTorch tensors, | |
each frame should be of shape (H, W, C), where H and W are frame height and width, and C is a number of | |
channels. | |
return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
If set, will return tensors of a particular framework. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return NumPy `np.ndarray` objects. | |
- `'jax'`: Return JAX `jnp.ndarray` objects. | |
Returns: | |
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields: | |
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | |
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
`None`). | |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `videos` is not `None`. | |
""" | |
max_text_length = kwargs.pop("max_text_length", None) | |
if text is None and videos is None: | |
raise ValueError("You have to specify either text or videos. Both cannot be none.") | |
encoding = {} | |
if text is not None: | |
textual_input = self.tokenizer.batch_encode_plus( | |
text, | |
truncation=True, | |
padding="max_length", | |
max_length=max_text_length, | |
pad_to_max_length=True, | |
return_tensors=return_tensors, | |
return_token_type_ids=False, | |
**kwargs, | |
) | |
encoding.update(textual_input) | |
if videos is not None: | |
image_features = self.image_processor(videos, return_tensors=return_tensors, **kwargs) | |
encoding.update(image_features) | |
return BatchEncoding(data=encoding, tensor_type=return_tensors) | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
def post_process_video_grounding(self, logits, video_durations): | |
""" | |
Compute the time of the video. | |
Args: | |
logits (`torch.Tensor`): | |
The logits output of TvpForVideoGrounding. | |
video_durations (`float`): | |
The video's duration. | |
Returns: | |
start (`float`): | |
The start time of the video. | |
end (`float`): | |
The end time of the video. | |
""" | |
start, end = ( | |
round(logits.tolist()[0][0] * video_durations, 1), | |
round(logits.tolist()[0][1] * video_durations, 1), | |
) | |
return start, end | |
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names | |
def model_input_names(self): | |
tokenizer_input_names = self.tokenizer.model_input_names | |
image_processor_input_names = self.image_processor.model_input_names | |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |