Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/udop
/modeling_udop.py
# coding=utf-8 | |
# Copyright 2024 Microsoft Research and HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch UDOP model.""" | |
import collections | |
import logging | |
import math | |
import random | |
from abc import ABC, abstractmethod | |
from copy import deepcopy | |
from dataclasses import dataclass | |
from typing import Any, Dict, Optional, Sequence, Tuple, Union | |
import torch | |
from torch import Tensor, nn | |
from torch.nn import CrossEntropyLoss | |
from transformers import UdopConfig | |
from transformers.modeling_outputs import ( | |
Seq2SeqLMOutput, | |
Seq2SeqModelOutput, | |
) | |
from ...activations import ACT2FN | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
replace_return_docstrings, | |
) | |
logger = logging.getLogger(__name__) | |
_CONFIG_FOR_DOC = "UdopConfig" | |
UDOP_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Args: | |
config ([`UdopConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
UDOP_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. UDOP is a model with relative position embeddings so | |
you should be able to pad the inputs on both the right and the left. Indices can be obtained using | |
[`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): | |
Bounding boxes of each input sequence tokens. Selected in the range `[0, | |
config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) | |
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, | |
y1) represents the position of the lower right corner. | |
Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] | |
token. See `pixel_values` for `patch_sequence_length`. | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Batch of document images. Each image is divided into patches of shape `(num_channels, config.patch_size, | |
config.patch_size)` and the total number of patches (=`patch_sequence_length`) equals to `((height / | |
config.patch_size) * (width / config.patch_size))`. | |
visual_bbox (`torch.LongTensor` of shape `(batch_size, patch_sequence_length, 4)`, *optional*): | |
Bounding boxes of each patch in the image. If not provided, bounding boxes are created in the model. | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using | |
[`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) T5 uses the `pad_token_id` as the starting | |
token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last | |
`decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare | |
`decoder_input_ids` for pretraining take a look at [T5 Training](./t5#training). | |
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in | |
`[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at | |
the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
input (see `past_key_values`). This is useful if you want more control over how to convert | |
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If | |
`decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of | |
`inputs_embeds`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
UDOP_ENCODER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you | |
should be able to pad the inputs on both the right and the left. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for detail. | |
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): | |
Bounding boxes of each input sequence tokens. Selected in the range `[0, | |
config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) | |
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, | |
y1) represents the position of the lower right corner. | |
Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] | |
token. See `pixel_values` for `patch_sequence_length`. | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Batch of document images. Each image is divided into patches of shape `(num_channels, config.patch_size, | |
config.patch_size)` and the total number of patches (=`patch_sequence_length`) equals to `((height / | |
config.patch_size) * (width / config.patch_size))`. | |
visual_bbox (`torch.LongTensor` of shape `(batch_size, patch_sequence_length, 4)`, *optional*): | |
Bounding boxes of each patch in the image. If not provided, bounding boxes are created in the model. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class BaseModelOutputWithAttentionMask(ModelOutput): | |
""" | |
Class for the model's outputs that may also contain a past key/values (to speed up sequential decoding). Includes | |
an additional attention mask. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. If `past_key_values` is used only | |
the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or | |
when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if | |
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, | |
encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the | |
self-attention blocks and optionally if `config.is_encoder_decoder=True` in the cross-attention blocks) | |
that can be used (see `past_key_values` input) to speed up sequential decoding. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or | |
when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of | |
the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when | |
`config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in | |
the self-attention heads. | |
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and | |
`config.add_cross_attention=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, | |
used to compute the weighted average in the cross-attention heads. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
attention_mask: torch.FloatTensor = None | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
def get_visual_bbox(image_size=224, patch_size=16): | |
image_feature_pool_shape = [image_size // patch_size, image_size // patch_size] | |
visual_bbox_x = torch.arange(0, 1.0 * (image_feature_pool_shape[1] + 1), 1.0) | |
visual_bbox_x /= image_feature_pool_shape[1] | |
visual_bbox_y = torch.arange(0, 1.0 * (image_feature_pool_shape[0] + 1), 1.0) | |
visual_bbox_y /= image_feature_pool_shape[0] | |
visual_bbox_input = torch.stack( | |
[ | |
visual_bbox_x[:-1].repeat(image_feature_pool_shape[0], 1), | |
visual_bbox_y[:-1].repeat(image_feature_pool_shape[1], 1).transpose(0, 1), | |
visual_bbox_x[1:].repeat(image_feature_pool_shape[0], 1), | |
visual_bbox_y[1:].repeat(image_feature_pool_shape[1], 1).transpose(0, 1), | |
], | |
dim=-1, | |
) | |
visual_bbox_input = visual_bbox_input.view(-1, 4) | |
return visual_bbox_input | |
def pad_sequence(seq, target_len, pad_value=0): | |
if isinstance(seq, torch.Tensor): | |
n = seq.shape[0] | |
else: | |
n = len(seq) | |
seq = torch.tensor(seq) | |
m = target_len - n | |
if m > 0: | |
ret = torch.stack([pad_value] * m).to(seq) | |
seq = torch.cat([seq, ret], dim=0) | |
return seq[:target_len] | |
def combine_image_text_embeddings( | |
image_embeddings, | |
inputs_embeds, | |
bbox, | |
visual_bbox, | |
attention_mask=None, | |
num_patches=14, | |
max_len=0, | |
image_size=224, | |
patch_size=16, | |
): | |
""" | |
Combine the image and text embeddings for the input to the encoder/decoder of UDOP. | |
First, the image embeddings are created by checking for each visual patch if it is inside the bounding box of a | |
token. If it is, the visual patch is combined with the token embedding. Then, the visual bounding boxes are combined | |
with the text bounding boxes. Finally, the visual bounding boxes are combined with the text attention mask. | |
""" | |
sequence_length = num_patches | |
ocr_points_x = torch.clip( | |
torch.floor((bbox[:, :, 0] + bbox[:, :, 2]) / 2.0 * sequence_length).long(), 0, sequence_length - 1 | |
) | |
ocr_points_y = ( | |
torch.clip(torch.floor((bbox[:, :, 1] + bbox[:, :, 3]) / 2.0 * sequence_length).long(), 0, sequence_length - 1) | |
* sequence_length | |
) | |
ocr_points = ocr_points_x + ocr_points_y | |
# make sure bounding boxes are of type float to calculate means | |
bbox = bbox.to(torch.float64) | |
target_seg = (bbox.mean(-1) == 0.0) | (bbox.mean(-1) == 1.0) | |
repeated_vision_embeds = torch.gather( | |
image_embeddings, 1, ocr_points.unsqueeze(-1).repeat(1, 1, image_embeddings.size(-1)) | |
) | |
repeated_vision_embeds[target_seg] = 0.0 | |
inputs_embeds += repeated_vision_embeds | |
patch_inds = torch.full_like(image_embeddings[:, :, 0], True).bool() | |
ind = torch.cat( | |
[ | |
torch.arange(len(ocr_points))[:, None].repeat(1, ocr_points.size(-1))[:, :, None].to(ocr_points), | |
ocr_points[:, :, None], | |
], | |
dim=-1, | |
) | |
ind = ind.flatten(0, 1) | |
rows, cols = zip(*ind) | |
patch_inds[rows, cols] = False | |
input_vision_patches = [image_embeddings[i][patch_inds[i]] for i in range(len(patch_inds))] | |
if visual_bbox is None: | |
visual_bbox = get_visual_bbox(image_size=image_size, patch_size=patch_size) | |
visual_bbox = visual_bbox.unsqueeze(0).repeat(image_embeddings.size(0), 1, 1) | |
visual_bbox = visual_bbox.to(image_embeddings.device) | |
visual_bbox = [visual_bbox[i][patch_inds[i]] for i in range(len(patch_inds))] | |
if attention_mask is not None: | |
visual_attention_mask = [torch.tensor([1] * len(item)).to(attention_mask) for item in visual_bbox] | |
if max_len == 0: | |
max_len = image_embeddings.size(1) | |
else: | |
max_len = max_len - inputs_embeds.size(1) | |
inputs_vision_patches = torch.stack( | |
[pad_sequence(item, max_len, torch.zeros_like(image_embeddings[0, 0])) for item in input_vision_patches] | |
) | |
visual_bbox = torch.stack([pad_sequence(item, max_len, torch.zeros_like(bbox[0, 0])) for item in visual_bbox]) | |
if attention_mask is not None: | |
visual_attention_mask = torch.stack( | |
[pad_sequence(item, max_len, torch.zeros_like(attention_mask[0, 0])) for item in visual_attention_mask] | |
) | |
inputs_embeds = torch.cat([inputs_embeds, inputs_vision_patches], 1) | |
bbox = torch.cat([bbox, visual_bbox], 1) | |
if attention_mask is not None: | |
attention_mask = torch.cat([attention_mask, visual_attention_mask], 1) | |
return inputs_embeds, bbox, attention_mask | |
class UdopPatchEmbeddings(nn.Module): | |
"""2D Image to Patch Embeddings""" | |
def __init__(self, config): | |
super().__init__() | |
image_size, patch_size = config.image_size, config.patch_size | |
num_channels, hidden_size = config.num_channels, config.hidden_size | |
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) | |
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) | |
def forward(self, pixel_values): | |
batch_size, num_channels, height, width = pixel_values.shape | |
if height != self.image_size[0] or width != self.image_size[1]: | |
raise ValueError( | |
f"Input image size ({height}*{width}) doesn't match model" | |
f" ({self.image_size[0]}*{self.image_size[1]})." | |
) | |
embeddings = self.proj(pixel_values) | |
embeddings = embeddings.flatten(2).transpose(1, 2) | |
return embeddings | |
class UdopPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. Based on `T5PreTrainedModel`. | |
""" | |
config_class = UdopConfig | |
base_model_prefix = "transformer" | |
supports_gradient_checkpointing = True | |
_keep_in_fp32_modules = ["wo"] | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
factor = self.config.initializer_factor # Used for testing weights initialization | |
if isinstance(module, UdopLayerNorm): | |
module.weight.data.fill_(factor * 1.0) | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=factor) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.Conv2d): | |
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid | |
# `trunc_normal_cpu` not implemented in `half` issues | |
module.weight.data = nn.init.trunc_normal_(module.weight.data.to(torch.float32), mean=0.0, std=factor).to( | |
module.weight.dtype | |
) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, RelativePositionBiasBase): | |
factor = self.config.initializer_factor | |
d_model = self.config.d_model | |
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) | |
elif isinstance(module, UdopModel): | |
# Mesh TensorFlow embeddings initialization | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 | |
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
elif isinstance(module, UdopForConditionalGeneration): | |
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: | |
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
elif isinstance(module, UdopDenseActDense): | |
# Mesh TensorFlow FF initialization | |
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 | |
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 | |
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.wi, "bias") and module.wi.bias is not None: | |
module.wi.bias.data.zero_() | |
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | |
if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
module.wo.bias.data.zero_() | |
elif isinstance(module, UdopDenseGatedActDense): | |
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: | |
module.wi_0.bias.data.zero_() | |
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: | |
module.wi_1.bias.data.zero_() | |
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | |
if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
module.wo.bias.data.zero_() | |
elif isinstance(module, UdopAttention): | |
# Mesh TensorFlow attention initialization to avoid scaling before softmax | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 | |
d_model = self.config.d_model | |
key_value_proj_dim = self.config.d_kv | |
n_heads = self.config.num_heads | |
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) | |
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | |
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | |
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) | |
if module.has_relative_attention_bias: | |
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) | |
# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetPreTrainedModel._shift_right with ProphetNet->Udop | |
def _shift_right(self, input_ids): | |
decoder_start_token_id = self.config.decoder_start_token_id | |
pad_token_id = self.config.pad_token_id | |
assert decoder_start_token_id is not None, ( | |
"self.model.config.decoder_start_token_id has to be defined. In Udop it is usually set to the" | |
" pad_token_id. See Udop docs for more information" | |
) | |
# shift inputs to the right | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
shifted_input_ids[..., 0] = decoder_start_token_id | |
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values" | |
return shifted_input_ids | |
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->Udop | |
class UdopLayerNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
Construct a layernorm module in the Udop style. No bias and no subtraction of mean. | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
# Udop uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean | |
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated | |
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for | |
# half-precision inputs is done in fp32 | |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
# convert into half-precision if necessary | |
if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
hidden_states = hidden_states.to(self.weight.dtype) | |
return self.weight * hidden_states | |
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->Udop | |
class UdopDenseActDense(nn.Module): | |
def __init__(self, config: UdopConfig): | |
super().__init__() | |
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = ACT2FN[config.dense_act_fn] | |
def forward(self, hidden_states): | |
hidden_states = self.wi(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
if ( | |
isinstance(self.wo.weight, torch.Tensor) | |
and hidden_states.dtype != self.wo.weight.dtype | |
and self.wo.weight.dtype != torch.int8 | |
): | |
hidden_states = hidden_states.to(self.wo.weight.dtype) | |
hidden_states = self.wo(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->Udop | |
class UdopDenseGatedActDense(nn.Module): | |
def __init__(self, config: UdopConfig): | |
super().__init__() | |
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = ACT2FN[config.dense_act_fn] | |
def forward(self, hidden_states): | |
hidden_gelu = self.act(self.wi_0(hidden_states)) | |
hidden_linear = self.wi_1(hidden_states) | |
hidden_states = hidden_gelu * hidden_linear | |
hidden_states = self.dropout(hidden_states) | |
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. | |
# See https://github.com/huggingface/transformers/issues/20287 | |
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` | |
if ( | |
isinstance(self.wo.weight, torch.Tensor) | |
and hidden_states.dtype != self.wo.weight.dtype | |
and self.wo.weight.dtype != torch.int8 | |
): | |
hidden_states = hidden_states.to(self.wo.weight.dtype) | |
hidden_states = self.wo(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->Udop | |
class UdopLayerFF(nn.Module): | |
def __init__(self, config: UdopConfig): | |
super().__init__() | |
if config.is_gated_act: | |
self.DenseReluDense = UdopDenseGatedActDense(config) | |
else: | |
self.DenseReluDense = UdopDenseActDense(config) | |
self.layer_norm = UdopLayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward(self, hidden_states): | |
forwarded_states = self.layer_norm(hidden_states) | |
forwarded_states = self.DenseReluDense(forwarded_states) | |
hidden_states = hidden_states + self.dropout(forwarded_states) | |
return hidden_states | |
# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->Udop | |
class UdopAttention(nn.Module): | |
def __init__(self, config: UdopConfig, has_relative_attention_bias=False): | |
super().__init__() | |
self.is_decoder = config.is_decoder | |
self.has_relative_attention_bias = has_relative_attention_bias | |
self.relative_attention_num_buckets = config.relative_attention_num_buckets | |
self.relative_attention_max_distance = config.relative_attention_max_distance | |
self.d_model = config.d_model | |
self.key_value_proj_dim = config.d_kv | |
self.n_heads = config.num_heads | |
self.dropout = config.dropout_rate | |
self.inner_dim = self.n_heads * self.key_value_proj_dim | |
# Mesh TensorFlow initialization to avoid scaling before softmax | |
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) | |
if self.has_relative_attention_bias: | |
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) | |
self.pruned_heads = set() | |
self.gradient_checkpointing = False | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads | |
) | |
# Prune linear layers | |
self.q = prune_linear_layer(self.q, index) | |
self.k = prune_linear_layer(self.k, index) | |
self.v = prune_linear_layer(self.v, index) | |
self.o = prune_linear_layer(self.o, index, dim=1) | |
# Update hyper params | |
self.n_heads = self.n_heads - len(heads) | |
self.inner_dim = self.key_value_proj_dim * self.n_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | |
""" | |
Adapted from Mesh Tensorflow: | |
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | |
Translate relative position to a bucket number for relative attention. The relative position is defined as | |
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | |
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | |
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | |
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | |
This should allow for more graceful generalization to longer sequences than the model has been trained on | |
Args: | |
relative_position: an int32 Tensor | |
bidirectional: a boolean - whether the attention is bidirectional | |
num_buckets: an integer | |
max_distance: an integer | |
Returns: | |
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | |
""" | |
relative_buckets = 0 | |
if bidirectional: | |
num_buckets //= 2 | |
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | |
relative_position = torch.abs(relative_position) | |
else: | |
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) | |
# now relative_position is in the range [0, inf) | |
# half of the buckets are for exact increments in positions | |
max_exact = num_buckets // 2 | |
is_small = relative_position < max_exact | |
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
relative_position_if_large = max_exact + ( | |
torch.log(relative_position.float() / max_exact) | |
/ math.log(max_distance / max_exact) | |
* (num_buckets - max_exact) | |
).to(torch.long) | |
relative_position_if_large = torch.min( | |
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | |
) | |
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) | |
return relative_buckets | |
def compute_bias(self, query_length, key_length, device=None): | |
"""Compute binned relative position bias""" | |
if device is None: | |
device = self.relative_attention_bias.weight.device | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position # shape (query_length, key_length) | |
relative_position_bucket = self._relative_position_bucket( | |
relative_position, # shape (query_length, key_length) | |
bidirectional=(not self.is_decoder), | |
num_buckets=self.relative_attention_num_buckets, | |
max_distance=self.relative_attention_max_distance, | |
) | |
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) | |
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) | |
return values | |
def forward( | |
self, | |
hidden_states, | |
mask=None, | |
key_value_states=None, | |
position_bias=None, | |
past_key_value=None, | |
layer_head_mask=None, | |
query_length=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
""" | |
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). | |
""" | |
# Input is (batch_size, seq_length, dim) | |
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) | |
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) | |
batch_size, seq_length = hidden_states.shape[:2] | |
real_seq_length = seq_length | |
if past_key_value is not None: | |
if len(past_key_value) != 2: | |
raise ValueError( | |
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" | |
) | |
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length | |
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] | |
def shape(states): | |
"""projection""" | |
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) | |
def unshape(states): | |
"""reshape""" | |
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) | |
def project(hidden_states, proj_layer, key_value_states, past_key_value): | |
"""projects hidden states correctly to key/query states""" | |
if key_value_states is None: | |
# self-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = shape(proj_layer(hidden_states)) | |
elif past_key_value is None: | |
# cross-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = shape(proj_layer(key_value_states)) | |
if past_key_value is not None: | |
if key_value_states is None: | |
# self-attn | |
# (batch_size, n_heads, key_length, dim_per_head) | |
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) | |
elif past_key_value.shape[2] != key_value_states.shape[1]: | |
# checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
# cross-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = shape(proj_layer(key_value_states)) | |
else: | |
# cross-attn | |
hidden_states = past_key_value | |
return hidden_states | |
# get query states | |
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) | |
# get key/value states | |
key_states = project( | |
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None | |
) | |
value_states = project( | |
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None | |
) | |
# compute scores | |
scores = torch.matmul( | |
query_states, key_states.transpose(3, 2) | |
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 | |
if position_bias is None: | |
if not self.has_relative_attention_bias: | |
position_bias = torch.zeros( | |
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype | |
) | |
if self.gradient_checkpointing and self.training: | |
position_bias.requires_grad = True | |
else: | |
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) | |
# if key and values are already calculated | |
# we want only the last query position bias | |
if past_key_value is not None: | |
position_bias = position_bias[:, :, -hidden_states.size(1) :, :] | |
if mask is not None: | |
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) | |
if self.pruned_heads: | |
mask = torch.ones(position_bias.shape[1]) | |
mask[list(self.pruned_heads)] = 0 | |
position_bias_masked = position_bias[:, mask.bool()] | |
else: | |
position_bias_masked = position_bias | |
scores += position_bias_masked | |
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( | |
scores | |
) # (batch_size, n_heads, seq_length, key_length) | |
attn_weights = nn.functional.dropout( | |
attn_weights, p=self.dropout, training=self.training | |
) # (batch_size, n_heads, seq_length, key_length) | |
# Mask heads if we want to | |
if layer_head_mask is not None: | |
attn_weights = attn_weights * layer_head_mask | |
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) | |
attn_output = self.o(attn_output) | |
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None | |
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) | |
if output_attentions: | |
outputs = outputs + (attn_weights,) | |
return outputs | |
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->Udop | |
class UdopLayerSelfAttention(nn.Module): | |
def __init__(self, config, has_relative_attention_bias=False): | |
super().__init__() | |
self.SelfAttention = UdopAttention(config, has_relative_attention_bias=has_relative_attention_bias) | |
self.layer_norm = UdopLayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.SelfAttention( | |
normed_hidden_states, | |
mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states = hidden_states + self.dropout(attention_output[0]) | |
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->Udop | |
class UdopLayerCrossAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.EncDecAttention = UdopAttention(config, has_relative_attention_bias=False) | |
self.layer_norm = UdopLayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
key_value_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
query_length=None, | |
output_attentions=False, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.EncDecAttention( | |
normed_hidden_states, | |
mask=attention_mask, | |
key_value_states=key_value_states, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
query_length=query_length, | |
output_attentions=output_attentions, | |
) | |
layer_output = hidden_states + self.dropout(attention_output[0]) | |
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.t5.modeling_t5.T5Block with T5->Udop | |
class UdopBlock(nn.Module): | |
def __init__(self, config, has_relative_attention_bias=False): | |
super().__init__() | |
self.is_decoder = config.is_decoder | |
self.layer = nn.ModuleList() | |
self.layer.append(UdopLayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) | |
if self.is_decoder: | |
self.layer.append(UdopLayerCrossAttention(config)) | |
self.layer.append(UdopLayerFF(config)) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
encoder_decoder_position_bias=None, | |
layer_head_mask=None, | |
cross_attn_layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
return_dict=True, | |
): | |
if past_key_value is not None: | |
if not self.is_decoder: | |
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") | |
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 | |
if len(past_key_value) != expected_num_past_key_values: | |
raise ValueError( | |
f"There should be {expected_num_past_key_values} past states. " | |
f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}" | |
f"Got {len(past_key_value)} past key / value states" | |
) | |
self_attn_past_key_value = past_key_value[:2] | |
cross_attn_past_key_value = past_key_value[2:] | |
else: | |
self_attn_past_key_value, cross_attn_past_key_value = None, None | |
self_attention_outputs = self.layer[0]( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=self_attn_past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states, present_key_value_state = self_attention_outputs[:2] | |
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
do_cross_attention = self.is_decoder and encoder_hidden_states is not None | |
if do_cross_attention: | |
# the actual query length is unknown for cross attention | |
# if using past key value states. Need to inject it here | |
if present_key_value_state is not None: | |
query_length = present_key_value_state[0].shape[2] | |
else: | |
query_length = None | |
cross_attention_outputs = self.layer[1]( | |
hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
position_bias=encoder_decoder_position_bias, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
query_length=query_length, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states = cross_attention_outputs[0] | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
# Combine self attn and cross attn key value states | |
if present_key_value_state is not None: | |
present_key_value_state = present_key_value_state + cross_attention_outputs[1] | |
# Keep cross-attention outputs and relative position weights | |
attention_outputs = attention_outputs + cross_attention_outputs[2:] | |
# Apply Feed Forward layer | |
hidden_states = self.layer[-1](hidden_states) | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
outputs = (hidden_states,) | |
if use_cache: | |
outputs = outputs + (present_key_value_state,) + attention_outputs | |
else: | |
outputs = outputs + attention_outputs | |
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
class UdopCellEmbeddings(nn.Module): | |
def __init__(self, max_2d_position_embeddings=501, hidden_size=1024): | |
super(UdopCellEmbeddings, self).__init__() | |
self.max_2d_position_embeddings = max_2d_position_embeddings | |
self.x_position_embeddings = nn.Embedding(max_2d_position_embeddings, hidden_size) | |
self.y_position_embeddings = nn.Embedding(max_2d_position_embeddings, hidden_size) | |
def forward(self, bbox): | |
bbox = torch.clip(bbox, 0.0, 1.0) | |
bbox = (bbox * (self.max_2d_position_embeddings - 1)).long() | |
left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) | |
upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) | |
right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) | |
lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) | |
embeddings = ( | |
left_position_embeddings | |
+ upper_position_embeddings | |
+ right_position_embeddings | |
+ lower_position_embeddings | |
) | |
return embeddings | |
# get function for bucket computation | |
# protected member access seems to be lesser evil than copy paste whole function | |
get_relative_position_bucket = UdopAttention._relative_position_bucket | |
AUGMENTATION_RANGE = (0.80, 1.25) | |
class RelativePositionBiasBase(nn.Module, ABC): | |
""" | |
Base class of relative biases. | |
Args: | |
num_heads (`int`): | |
Number of attention heads in the model, it will create embeddings of size `num_heads`, which will be added to the scores of each token pair. | |
relative_attention_num_buckets (`int`, *optional*, defaults to 32): | |
Pair token metric (distance in the sequence, distance in pixels etc.) will be bucketed, parameter is defining number of such | |
buckets. | |
bidirectional (`bool`, *optional*, defaults to `True`): | |
Whether the distance should be bidirectional for a pair of tokens. If `False`, then distance(tok1, tok2) == distance(tok2, tok1). | |
scaling_factor (`int`, *optional*, defaults to 1): | |
Defining factor which will be used to scale relative distance. | |
max_distance (`int`, *optional*, defaults to 128): | |
All distances above this value will end up in the one/same bucket. | |
augmentation (`bool`, *optional*, defaults to `False`): | |
Whether to multiply relative distances by a random scalar. | |
expand (`bool`, *optional*, defaults to `False`): | |
Whether to expand an existing pretrained model with subsequent additions of prefix_bucket. | |
""" | |
def __init__( | |
self, | |
num_heads=None, | |
relative_attention_num_buckets=32, | |
bidirectional=True, | |
scaling_factor=1, | |
max_distance=128, | |
level="tokens", | |
augmentation=False, | |
prefix_bucket=False, | |
expand=False, | |
): | |
super(RelativePositionBiasBase, self).__init__() | |
self.prefix_bucket = prefix_bucket | |
self.augmentation = augmentation | |
self.level = level | |
self.max_distance = max_distance | |
self.scaling_factor = scaling_factor | |
self.bidirectional = bidirectional | |
self.num_heads = num_heads | |
self.expand = expand | |
self.relative_attention_num_buckets = relative_attention_num_buckets | |
extra_head = 2 if prefix_bucket and not self.expand else 0 | |
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets + extra_head, self.num_heads) | |
def prepare_input( | |
self, | |
attention_mask: Optional[Tensor] = None, | |
bbox: Optional[Dict[str, Any]] = None, | |
) -> Tensor: | |
pass | |
def get_bucket(self, attention_mask: Optional[Tensor] = None, bbox: Optional[Dict[str, Any]] = None) -> Tensor: | |
relative_position = self.prepare_input(attention_mask, bbox) | |
rp_bucket: Tensor = get_relative_position_bucket( | |
relative_position, | |
bidirectional=self.bidirectional, | |
num_buckets=self.relative_attention_num_buckets, | |
max_distance=self.max_distance, | |
) | |
return rp_bucket | |
def get_relative_position(self, positions): | |
context_position = positions[:, :, None] | |
memory_position = positions[:, None, :] | |
relative_position = memory_position - context_position | |
if self.augmentation and self.training: | |
relative_position *= random.uniform(*AUGMENTATION_RANGE) | |
relative_position *= self.scaling_factor | |
return relative_position.to(torch.long) | |
def forward(self, attention_mask: Optional[Tensor] = None, bbox: Optional[Dict[str, Any]] = None) -> Tensor: | |
# re-using pretrained model with subsequent addition of prefix_bucket | |
if self.expand and self.prefix_bucket: | |
new_bias = nn.Embedding(self.relative_attention_num_buckets + 2, self.num_heads) | |
new_bias.weight.data[: self.relative_attention_num_buckets] = self.relative_attention_bias.weight.data | |
new_bias.weight.data[self.relative_attention_num_buckets :] = 0.1 | |
self.relative_attention_bias = new_bias | |
self.expand = False | |
rp_bucket = self.get_bucket(attention_mask, bbox) | |
if self.prefix_bucket: | |
if rp_bucket.size(0) == 1 and attention_mask.size(0) > 1: | |
rp_bucket = rp_bucket.repeat(attention_mask.size(0), 1, 1) | |
# based on assumption that prefix bboxes are negative | |
is_prefix = bbox[:, :, 1] < 0 | |
num_prefix = is_prefix.sum(-1) | |
for idx, num_prefix_row in enumerate(num_prefix.cpu().numpy()): | |
rp_bucket[idx, :num_prefix_row, num_prefix_row:] = self.relative_attention_num_buckets | |
rp_bucket[idx, num_prefix_row:, :num_prefix_row] = self.relative_attention_num_buckets + 1 | |
values: Tensor = self.relative_attention_bias(rp_bucket) | |
if values.dim() != 4: | |
raise ValueError("Wrong dimension of values tensor") | |
values = values.permute([0, 3, 1, 2]) | |
return values | |
class RelativePositionBias1D(RelativePositionBiasBase): | |
def __init__(self, scaling_factor=1, max_distance=128, **kwargs): | |
""" | |
Reimplementation of T5 relative position bias. Distance between given tokens is their distance in the sequence. | |
Parameters are the same as in base class | |
""" | |
super().__init__(scaling_factor=scaling_factor, max_distance=max_distance, **kwargs) | |
def prepare_input(self, attention_mask: Optional[Tensor] = None, bbox: Optional[Dict[str, Any]] = None) -> Tensor: | |
if self.scaling_factor != 1: | |
raise ValueError("No need to scale 1d features") | |
relative_position = self.get_relative_position( | |
torch.arange(attention_mask.size(1), dtype=torch.long, device=attention_mask.device)[None, :] | |
) | |
return relative_position | |
class RelativePositionBiasHorizontal(RelativePositionBiasBase): | |
def __init__(self, scaling_factor=100, max_distance=100, **kwargs): | |
""" | |
Represents in the bucket embeddings horizontal distance between two tokens. Parameters are the same as in base | |
class | |
""" | |
super().__init__(scaling_factor=scaling_factor, max_distance=max_distance, **kwargs) | |
def prepare_input(self, attention_mask: Optional[Tensor] = None, bbox: Optional[Dict[str, Any]] = None) -> Tensor: | |
if not self.scaling_factor > 1.0: | |
raise ValueError("Need to scale the values of bboxes, as there are in small (0,1) range") | |
if bbox is None: | |
raise ValueError("Bbox is required for horizontal relative position bias") | |
# get x positions of left point of bbox | |
horizontal_position: Tensor = bbox[:, :, [0, 2]].mean(dim=-1) | |
return self.get_relative_position(horizontal_position) | |
class RelativePositionBiasVertical(RelativePositionBiasBase): | |
def __init__(self, scaling_factor=100, max_distance=100, **kwargs): | |
""" | |
Represents in the bucket embeddings vertical distance between two tokens. Parameters are the same as in base | |
class | |
""" | |
super().__init__(scaling_factor=scaling_factor, max_distance=max_distance, **kwargs) | |
def prepare_input(self, attention_mask: Optional[Tensor] = None, bbox: Optional[Dict[str, Any]] = None) -> Tensor: | |
if not self.scaling_factor > 1.0: | |
raise ValueError("Need to scale the values of bboxes, as there are in small (0,1) range") | |
if bbox is None: | |
raise ValueError("Bbox is required for vertical relative position bias") | |
# get y positions of middle of bbox | |
vertical_position: Tensor = bbox[:, :, [1, 3]].mean(dim=-1) | |
return self.get_relative_position(vertical_position) | |
class RelativePositionBiasAggregated(nn.Module): | |
def __init__(self, modules: Sequence[RelativePositionBiasBase]): | |
""" | |
Class which sums up various computed biases. | |
Args: | |
modules (Sequence[RelativePositionBiasBase]): | |
List of relative bias modules. | |
""" | |
super().__init__() | |
self.biases = nn.ModuleList(modules) | |
def forward( | |
self, attention_mask: Optional[Tensor] = None, bbox: Optional[Dict[str, Any]] = None | |
) -> Union[float, Tensor]: | |
output = 0.0 | |
for bias in self.biases: # type: ignore | |
output = bias(attention_mask, bbox) + output | |
return output | |
BIAS_CLASSES = { | |
"1d": RelativePositionBias1D, | |
"horizontal": RelativePositionBiasHorizontal, | |
"vertical": RelativePositionBiasVertical, | |
} | |
def create_relative_bias(config: UdopConfig) -> Sequence[RelativePositionBiasBase]: | |
""" | |
Creates empty list or one/multiple relative biases. | |
:param config: Model's configuration :return: Sequence with created bias modules. | |
""" | |
bias_list = [] | |
if hasattr(config, "relative_bias_args"): | |
for bias_kwargs_org in config.relative_bias_args: | |
bias_kwargs = deepcopy(bias_kwargs_org) | |
bias_type = bias_kwargs.pop("type") | |
model_num_heads = config.num_heads if hasattr(config, "num_heads") else config.num_attention_heads | |
if "num_heads" in bias_kwargs: | |
if bias_kwargs["num_heads"] != model_num_heads: | |
raise ValueError("Number of heads must match num of heads in the model") | |
else: | |
bias_kwargs["num_heads"] = model_num_heads | |
bias_list.append(BIAS_CLASSES[bias_type](**bias_kwargs)) # type: ignore | |
return bias_list | |
class UdopStack(UdopPreTrainedModel): | |
""" | |
This class is based on `T5Stack`, but modified to take into account the image modality as well as 2D position | |
embeddings. | |
""" | |
def __init__(self, config, embed_tokens=None, embed_patches=None): | |
super().__init__(config) | |
self.embed_tokens = embed_tokens | |
self.embed_patches = embed_patches | |
self.is_decoder = config.is_decoder | |
self._max_length = config.max_length | |
self.num_layers = config.num_layers | |
self.block = nn.ModuleList( | |
[UdopBlock(config, has_relative_attention_bias=bool(i == 0)) for i in range(self.num_layers)] | |
) | |
self.final_layer_norm = UdopLayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
if not self.is_decoder: | |
self.cell_2d_embedding = UdopCellEmbeddings(config.max_2d_position_embeddings, config.hidden_size) | |
# get weights from encoder position bias | |
self.relative_bias = self._get_relative_bias(config) | |
def _tie_weights(self): | |
for bias in self.relative_bias.biases: | |
if isinstance(bias, RelativePositionBias1D): | |
self._tie_or_clone_weights( | |
bias.relative_attention_bias, self.block[0].layer[0].SelfAttention.relative_attention_bias | |
) | |
def _get_relative_bias(config: UdopConfig) -> RelativePositionBiasAggregated: | |
relative_bias_list = create_relative_bias(config) | |
return RelativePositionBiasAggregated(relative_bias_list) | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def get_output_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, new_embeddings): | |
self.embed_tokens = new_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
bbox=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
inputs_embeds=None, | |
pixel_values=None, | |
visual_bbox=None, | |
image_embeddings=None, | |
position_bias=None, | |
head_mask=None, | |
cross_attn_head_mask=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# input embeddings processing | |
if input_ids is not None and inputs_embeds is not None: | |
err_msg_prefix = "decoder_" if self.is_decoder else "" | |
raise ValueError( | |
f"You cannot specify both {err_msg_prefix}inputs and {err_msg_prefix}inputs_embeds at the same time" | |
) | |
elif input_ids is not None and torch.numel(input_ids) > 0: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is None and input_ids is not None and torch.numel(input_ids) == 0: | |
input_ids = torch.full((4, 1024), self.config.pad_token_id, device=input_ids.device, dtype=input_ids.dtype) | |
attention_mask = torch.zeros((4, 1024), device=input_ids.device, dtype=input_ids.dtype) | |
bbox = torch.zeros((4, 1024, 4), device=input_ids.device, dtype=input_ids.dtype) | |
input_shape = input_ids.size() | |
position_bias = torch.zeros_like(self.get_extended_attention_mask(attention_mask, input_shape)) | |
# encoder_attention_mask = attention_mask | |
logger.warning("Empty batch") | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
err_msg_prefix = "decoder_" if self.is_decoder else "" | |
raise ValueError(f"You have to specify either {err_msg_prefix}inputs or {err_msg_prefix}inputs_embeds") | |
if inputs_embeds is None: | |
if self.embed_tokens is None: | |
raise ValueError("You have to intialize the model with valid token embeddings") | |
inputs_embeds = self.embed_tokens(input_ids) | |
if pixel_values is not None: | |
image_embeddings = self.embed_patches(pixel_values) | |
if image_embeddings is not None: | |
# combine visual and OCR text embeddings | |
num_patches = self.config.image_size // self.config.patch_size | |
inputs_embeds, bbox, attention_mask = combine_image_text_embeddings( | |
image_embeddings, | |
inputs_embeds, | |
bbox, | |
visual_bbox, | |
attention_mask, | |
num_patches, | |
0, | |
self.config.image_size, | |
self.config.patch_size, | |
) | |
input_shape = inputs_embeds.size()[:-1] | |
if not self.is_decoder and bbox is not None: | |
inputs_embeds += self.cell_2d_embedding(bbox) | |
batch_size, seq_length = input_shape | |
# required mask seq length can be calculated via length of past | |
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length | |
if use_cache is True: | |
assert self.is_decoder, "`use_cache` can only be set to `True` if {} is used as a decoder".format(self) | |
if attention_mask is None: | |
attention_mask = torch.ones(batch_size, mask_seq_length).to(inputs_embeds.device) | |
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: | |
encoder_seq_length = encoder_hidden_states.shape[1] | |
encoder_attention_mask = torch.ones( | |
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long | |
) | |
# initialize past_key_values with `None` if past does not exist | |
if past_key_values is None: | |
past_key_values = [None] * len(self.block) | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) | |
if self.is_decoder and encoder_attention_mask is not None: | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
# Prepare head mask if needed | |
head_mask = self.get_head_mask(head_mask, self.num_layers) | |
present_key_value_states = () if use_cache else None | |
all_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and self.is_decoder) else None | |
if self.is_decoder: # modified lines | |
position_bias = None | |
else: | |
position_bias = self.relative_bias(attention_mask=attention_mask, bbox=bbox) | |
position_bias = position_bias + extended_attention_mask | |
encoder_decoder_position_bias = None | |
hidden_states = inputs_embeds | |
hidden_states = self.dropout(hidden_states) | |
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask=extended_attention_mask, | |
position_bias=position_bias, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
encoder_decoder_position_bias=encoder_decoder_position_bias, | |
layer_head_mask=head_mask[i], | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
# layer_outputs is a tuple with: | |
# hidden-states, key-value-states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias) | |
if use_cache is False: # MP fixes | |
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] | |
hidden_states, present_key_value_state = layer_outputs[:2] | |
# We share the position biases between the layers - the first layer store them | |
# layer_outputs = hidden-states, key-value-states (self-attention weights), | |
# (self-attention position bias), (cross-attention weights), (cross-attention position bias) | |
position_bias = layer_outputs[2] | |
if self.is_decoder and encoder_hidden_states is not None: | |
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] | |
# append next layer key value states | |
if use_cache: | |
present_key_value_states = present_key_value_states + (present_key_value_state,) | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[2],) # We keep only self-attention weights for now | |
if self.is_decoder: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[5],) | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
# Add last layer | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
attention_mask, | |
present_key_value_states, | |
all_hidden_states, | |
all_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithAttentionMask( | |
last_hidden_state=hidden_states, | |
attention_mask=attention_mask, | |
past_key_values=present_key_value_states, | |
hidden_states=all_hidden_states, | |
attentions=all_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
class UdopModel(UdopPreTrainedModel): | |
_tied_weights_keys = [ | |
"encoder.embed_tokens.weight", | |
"decoder.embed_tokens.weight", | |
"encoder.embed_patches.proj.weight", | |
"encoder.embed_patches.proj.bias", | |
"encoder.relative_bias.biases.0.relative_attention_bias.weight", | |
"decoder.relative_bias.biases.0.relative_attention_bias.weight", | |
] | |
def __init__(self, config): | |
super(UdopModel, self).__init__(config) | |
# text and image embeddings | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
self.patch_embed = UdopPatchEmbeddings(config) | |
encoder_config = deepcopy(config) | |
encoder_config.is_decoder = False | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = UdopStack(encoder_config, self.shared, self.patch_embed) | |
decoder_config = deepcopy(config) | |
decoder_config.is_decoder = True | |
decoder_config.is_encoder_decoder = False | |
decoder_config.num_layers = config.num_decoder_layers | |
self.decoder = UdopStack(decoder_config, self.shared) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
self.decoder.set_input_embeddings(new_embeddings) | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def forward( | |
self, | |
input_ids: Tensor = None, | |
attention_mask: Tensor = None, | |
bbox: Dict[str, Any] = None, | |
pixel_values: Optional[Tensor] = None, | |
visual_bbox: Dict[str, Any] = None, | |
decoder_input_ids: Optional[Tensor] = None, | |
decoder_attention_mask: Optional[Tensor] = None, | |
inputs_embeds: Optional[Tensor] = None, | |
encoder_outputs: Optional[Tensor] = None, | |
past_key_values: Optional[Tensor] = None, | |
head_mask: Optional[Tensor] = None, | |
decoder_inputs_embeds: Optional[Tensor] = None, | |
decoder_head_mask: Optional[Tensor] = None, | |
cross_attn_head_mask: Optional[Tensor] = None, | |
use_cache=True, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Tuple[Tensor, ...]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoProcessor, AutoModel | |
>>> from datasets import load_dataset | |
>>> import torch | |
>>> # load model and processor | |
>>> # in this case, we already have performed OCR ourselves | |
>>> # so we initialize the processor with `apply_ocr=False` | |
>>> processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=False) | |
>>> model = AutoModel.from_pretrained("microsoft/udop-large") | |
>>> # load an example image, along with the words and coordinates | |
>>> # which were extracted using an OCR engine | |
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True) | |
>>> example = dataset[0] | |
>>> image = example["image"] | |
>>> words = example["tokens"] | |
>>> boxes = example["bboxes"] | |
>>> inputs = processor(image, words, boxes=boxes, return_tensors="pt") | |
>>> decoder_input_ids = torch.tensor([[model.config.decoder_start_token_id]]) | |
>>> # forward pass | |
>>> outputs = model(**inputs, decoder_input_ids=decoder_input_ids) | |
>>> last_hidden_states = outputs.last_hidden_state | |
>>> list(last_hidden_states.shape) | |
[1, 1, 1024] | |
```""" | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# Encode if needed (training, first prediction pass) | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
bbox=bbox, | |
pixel_values=pixel_values, | |
visual_bbox=visual_bbox, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = encoder_outputs[0] | |
encoder_attention_mask = encoder_outputs.attention_mask if return_dict else encoder_outputs[1] | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
past_key_values=past_key_values, | |
encoder_hidden_states=hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
# we filter out the attention mask | |
decoder_outputs = tuple(value for idx, value in enumerate(decoder_outputs) if idx != 1) | |
encoder_outputs = tuple(value for idx, value in enumerate(encoder_outputs) if idx != 1) | |
return decoder_outputs + encoder_outputs | |
return Seq2SeqModelOutput( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
class UdopForConditionalGeneration(UdopPreTrainedModel): | |
_tied_weights_keys = [ | |
"encoder.embed_tokens.weight", | |
"decoder.embed_tokens.weight", | |
"encoder.embed_patches.proj.weight", | |
"encoder.embed_patches.proj.bias", | |
"encoder.relative_bias.biases.0.relative_attention_bias.weight", | |
"decoder.relative_bias.biases.0.relative_attention_bias.weight", | |
"lm_head.weight", | |
] | |
def __init__(self, config): | |
super(UdopForConditionalGeneration, self).__init__(config) | |
# text and image embeddings | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
self.patch_embed = UdopPatchEmbeddings(config) | |
encoder_config = deepcopy(config) | |
encoder_config.is_decoder = False | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = UdopStack(encoder_config, self.shared, self.patch_embed) | |
decoder_config = deepcopy(config) | |
decoder_config.is_decoder = True | |
decoder_config.is_encoder_decoder = False | |
decoder_config.num_layers = config.num_decoder_layers | |
self.decoder = UdopStack(decoder_config, self.shared) | |
# The weights of the language modeling head are shared with those of the encoder and decoder | |
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
self.decoder.set_input_embeddings(new_embeddings) | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def get_output_embeddings(self): | |
return self.lm_head | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def forward( | |
self, | |
input_ids: Tensor = None, | |
attention_mask: Tensor = None, | |
bbox: Dict[str, Any] = None, | |
pixel_values: Optional[Tensor] = None, | |
visual_bbox: Dict[str, Any] = None, | |
decoder_input_ids: Optional[Tensor] = None, | |
decoder_attention_mask: Optional[Tensor] = None, | |
inputs_embeds: Optional[Tensor] = None, | |
encoder_outputs: Optional[Tensor] = None, | |
past_key_values: Optional[Tensor] = None, | |
head_mask: Optional[Tensor] = None, | |
decoder_inputs_embeds: Optional[Tensor] = None, | |
decoder_head_mask: Optional[Tensor] = None, | |
cross_attn_head_mask: Optional[Tensor] = None, | |
use_cache=True, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[Tensor] = None, | |
) -> Tuple[Tensor, ...]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size - | |
1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., | |
config.vocab_size]`. | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoProcessor, UdopForConditionalGeneration | |
>>> from datasets import load_dataset | |
>>> # load model and processor | |
>>> # in this case, we already have performed OCR ourselves | |
>>> # so we initialize the processor with `apply_ocr=False` | |
>>> processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=False) | |
>>> model = UdopForConditionalGeneration.from_pretrained("microsoft/udop-large") | |
>>> # load an example image, along with the words and coordinates | |
>>> # which were extracted using an OCR engine | |
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True) | |
>>> example = dataset[0] | |
>>> image = example["image"] | |
>>> words = example["tokens"] | |
>>> boxes = example["bboxes"] | |
>>> # one can use the various task prefixes (prompts) used during pre-training | |
>>> # e.g. the task prefix for DocVQA is "Question answering. " | |
>>> question = "Question answering. What is the date on the form?" | |
>>> encoding = processor(image, question, words, boxes=boxes, return_tensors="pt") | |
>>> # autoregressive generation | |
>>> predicted_ids = model.generate(**encoding) | |
>>> print(processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]) | |
9/30/92 | |
```""" | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if decoder_input_ids is None and labels is not None: | |
decoder_input_ids = self._shift_right(labels) | |
# Encode if needed (training, first prediction pass) | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
bbox=bbox, | |
visual_bbox=visual_bbox, | |
pixel_values=pixel_values, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = encoder_outputs[0] | |
encoder_attention_mask = encoder_outputs.attention_mask if return_dict else encoder_outputs[1] | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
past_key_values=past_key_values, | |
encoder_hidden_states=hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = decoder_outputs[0] | |
if self.config.tie_word_embeddings: | |
# Rescale output before projecting on vocab | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 | |
sequence_output = sequence_output * (self.config.d_model**-0.5) | |
lm_logits = self.lm_head(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=-100) | |
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) | |
if not return_dict: | |
output = (lm_logits,) + decoder_outputs[2:] + (encoder_outputs[0],) + encoder_outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return Seq2SeqLMOutput( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
use_cache=None, | |
encoder_outputs=None, | |
**kwargs, | |
): | |
# cut decoder_input_ids if past is used | |
if past_key_values is not None: | |
input_ids = input_ids[:, -1:] | |
return { | |
"decoder_input_ids": input_ids, | |
"past_key_values": past_key_values, | |
"encoder_outputs": encoder_outputs, | |
"attention_mask": attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
"use_cache": use_cache, | |
"bbox": kwargs.get("bbox", None), | |
"pixel_values": kwargs.get("pixel_values", None), | |
"visual_bbox": kwargs.get("visual_bbox", None), | |
} | |
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration._reorder_cache | |
def _reorder_cache(self, past_key_values, beam_idx): | |
# if decoder past is not included in output | |
# speedy decoding is disabled and no need to reorder | |
if past_key_values is None: | |
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") | |
return past_key_values | |
reordered_decoder_past = () | |
for layer_past_states in past_key_values: | |
# get the correct batch idx from layer past batch dim | |
# batch dim of `past` is at 2nd position | |
reordered_layer_past_states = () | |
for layer_past_state in layer_past_states: | |
# need to set correct `past` for each of the four key / value states | |
reordered_layer_past_states = reordered_layer_past_states + ( | |
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), | |
) | |
if reordered_layer_past_states[0].shape != layer_past_states[0].shape: | |
raise ValueError( | |
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" | |
) | |
if len(reordered_layer_past_states) != len(layer_past_states): | |
raise ValueError( | |
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" | |
) | |
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) | |
return reordered_decoder_past | |
class UdopEncoderModel(UdopPreTrainedModel): | |
_tied_weights_keys = [ | |
"encoder.embed_tokens.weight", | |
"encoder.embed_patches.proj.weight", | |
"encoder.embed_patches.proj.bias", | |
"encoder.relative_bias.biases.0.relative_attention_bias.weight", | |
] | |
def __init__(self, config: UdopConfig): | |
super().__init__(config) | |
# text and image embeddings | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
self.patch_embed = UdopPatchEmbeddings(config) | |
encoder_config = deepcopy(config) | |
encoder_config.is_decoder = False | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = UdopStack(encoder_config, self.shared, self.patch_embed) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
def get_encoder(self): | |
return self.encoder | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Tensor = None, | |
bbox: Dict[str, Any] = None, | |
attention_mask: Tensor = None, | |
pixel_values: Optional[Tensor] = None, | |
visual_bbox: Dict[str, Any] = None, | |
head_mask: Optional[Tensor] = None, | |
inputs_embeds: Optional[Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithAttentionMask]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoProcessor, UdopEncoderModel | |
>>> from huggingface_hub import hf_hub_download | |
>>> from datasets import load_dataset | |
>>> # load model and processor | |
>>> # in this case, we already have performed OCR ourselves | |
>>> # so we initialize the processor with `apply_ocr=False` | |
>>> processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=False) | |
>>> model = UdopEncoderModel.from_pretrained("microsoft/udop-large") | |
>>> # load an example image, along with the words and coordinates | |
>>> # which were extracted using an OCR engine | |
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True) | |
>>> example = dataset[0] | |
>>> image = example["image"] | |
>>> words = example["tokens"] | |
>>> boxes = example["bboxes"] | |
>>> encoding = processor(image, words, boxes=boxes, return_tensors="pt") | |
>>> outputs = model(**encoding) | |
>>> last_hidden_states = outputs.last_hidden_state | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
bbox=bbox, | |
visual_bbox=visual_bbox, | |
pixel_values=pixel_values, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
return encoder_outputs | |