Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/udop
/processing_udop.py
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processor class for UDOP. | |
""" | |
from typing import List, Optional, Union | |
from ...image_utils import ImageInput | |
from ...processing_utils import ProcessorMixin | |
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy | |
from ...utils import TensorType | |
class UdopProcessor(ProcessorMixin): | |
r""" | |
Constructs a UDOP processor which combines a LayoutLMv3 image processor and a UDOP tokenizer into a single processor. | |
[`UdopProcessor`] offers all the functionalities you need to prepare data for the model. | |
It first uses [`LayoutLMv3ImageProcessor`] to resize, rescale and normalize document images, and optionally applies OCR | |
to get words and normalized bounding boxes. These are then provided to [`UdopTokenizer`] or [`UdopTokenizerFast`], | |
which turns the words and bounding boxes into token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`. | |
Optionally, one can provide integer `word_labels`, which are turned into token-level `labels` for token | |
classification tasks (such as FUNSD, CORD). | |
Additionally, it also supports passing `text_target` and `text_pair_target` to the tokenizer, which can be used to | |
prepare labels for language modeling tasks. | |
Args: | |
image_processor (`LayoutLMv3ImageProcessor`): | |
An instance of [`LayoutLMv3ImageProcessor`]. The image processor is a required input. | |
tokenizer (`UdopTokenizer` or `UdopTokenizerFast`): | |
An instance of [`UdopTokenizer`] or [`UdopTokenizerFast`]. The tokenizer is a required input. | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
image_processor_class = "LayoutLMv3ImageProcessor" | |
tokenizer_class = ("UdopTokenizer", "UdopTokenizerFast") | |
def __init__(self, image_processor, tokenizer): | |
super().__init__(image_processor, tokenizer) | |
def __call__( | |
self, | |
images: Optional[ImageInput] = None, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, | |
boxes: Union[List[List[int]], List[List[List[int]]]] = None, | |
word_labels: Optional[Union[List[int], List[List[int]]]] = None, | |
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
text_pair_target: Optional[ | |
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] | |
] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = False, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
) -> BatchEncoding: | |
""" | |
This method first forwards the `images` argument to [`~UdopImageProcessor.__call__`]. In case | |
[`UdopImageProcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and | |
bounding boxes along with the additional arguments to [`~UdopTokenizer.__call__`] and returns the output, | |
together with the prepared `pixel_values`. In case [`UdopImageProcessor`] was initialized with `apply_ocr` set | |
to `False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the | |
additional arguments to [`~UdopTokenizer.__call__`] and returns the output, together with the prepared | |
`pixel_values`. | |
Alternatively, one can pass `text_target` and `text_pair_target` to prepare the targets of UDOP. | |
Please refer to the docstring of the above two methods for more information. | |
""" | |
# verify input | |
if self.image_processor.apply_ocr and (boxes is not None): | |
raise ValueError( | |
"You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." | |
) | |
if self.image_processor.apply_ocr and (word_labels is not None): | |
raise ValueError( | |
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." | |
) | |
if return_overflowing_tokens is True and return_offsets_mapping is False: | |
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.") | |
if text_target is not None: | |
# use the processor to prepare the targets of UDOP | |
return self.tokenizer( | |
text_target=text_target, | |
text_pair_target=text_pair_target, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
return_tensors=return_tensors, | |
) | |
else: | |
# use the processor to prepare the inputs of UDOP | |
# first, apply the image processor | |
features = self.image_processor(images=images, return_tensors=return_tensors) | |
# second, apply the tokenizer | |
if text is not None and self.image_processor.apply_ocr and text_pair is None: | |
if isinstance(text, str): | |
text = [text] # add batch dimension (as the image processor always adds a batch dimension) | |
text_pair = features["words"] | |
encoded_inputs = self.tokenizer( | |
text=text if text is not None else features["words"], | |
text_pair=text_pair if text_pair is not None else None, | |
boxes=boxes if boxes is not None else features["boxes"], | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
return_tensors=return_tensors, | |
) | |
# add pixel values | |
pixel_values = features.pop("pixel_values") | |
if return_overflowing_tokens is True: | |
pixel_values = self.get_overflowing_images(pixel_values, encoded_inputs["overflow_to_sample_mapping"]) | |
encoded_inputs["pixel_values"] = pixel_values | |
return encoded_inputs | |
# Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.get_overflowing_images | |
def get_overflowing_images(self, images, overflow_to_sample_mapping): | |
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image | |
images_with_overflow = [] | |
for sample_idx in overflow_to_sample_mapping: | |
images_with_overflow.append(images[sample_idx]) | |
if len(images_with_overflow) != len(overflow_to_sample_mapping): | |
raise ValueError( | |
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" | |
f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}" | |
) | |
return images_with_overflow | |
# Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.batch_decode | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
# Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.decode | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer | |
to the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
# Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.model_input_names | |
def model_input_names(self): | |
return ["input_ids", "bbox", "attention_mask", "pixel_values"] | |