Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/udop
/tokenization_udop.py
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License | |
"""Tokenization classes for UDOP model.""" | |
import os | |
import re | |
import warnings | |
from shutil import copyfile | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import sentencepiece as spm | |
from ...tokenization_utils import PreTrainedTokenizer | |
from ...tokenization_utils_base import ( | |
AddedToken, | |
BatchEncoding, | |
EncodedInput, | |
PreTokenizedInput, | |
TextInput, | |
TextInputPair, | |
TruncationStrategy, | |
) | |
from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging | |
logger = logging.get_logger(__name__) | |
SPIECE_UNDERLINE = "▁" | |
UDOP_ENCODE_KWARGS_DOCSTRING = r""" | |
add_special_tokens (`bool`, *optional*, defaults to `True`): | |
Whether or not to encode the sequences with the special tokens relative to their model. | |
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): | |
Activates and controls padding. Accepts the following values: | |
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
lengths). | |
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): | |
Activates and controls truncation. Accepts the following values: | |
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or | |
to the maximum acceptable input length for the model if that argument is not provided. This will | |
truncate token by token, removing a token from the longest sequence in the pair if a pair of | |
sequences (or a batch of pairs) is provided. | |
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths | |
greater than the model maximum admissible input size). | |
max_length (`int`, *optional*): | |
Controls the maximum length to use by one of the truncation/padding parameters. | |
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length | |
is required by one of the truncation/padding parameters. If the model has no specific maximum input | |
length (like XLNet) truncation/padding to a maximum length will be deactivated. | |
stride (`int`, *optional*, defaults to 0): | |
If set to a number along with `max_length`, the overflowing tokens returned when | |
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence | |
returned to provide some overlap between truncated and overflowing sequences. The value of this | |
argument defines the number of overlapping tokens. | |
pad_to_multiple_of (`int`, *optional*): | |
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable | |
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). | |
return_tensors (`str` or [`~file_utils.TensorType`], *optional*): | |
If set, will return tensors instead of list of python integers. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return Numpy `np.ndarray` objects. | |
return_token_type_ids (`bool`, *optional*): | |
Whether to return token type IDs. If left to the default, will return the token type IDs according to | |
the specific tokenizer's default, defined by the `return_outputs` attribute. | |
[What are token type IDs?](../glossary#token-type-ids) | |
return_attention_mask (`bool`, *optional*): | |
Whether to return the attention mask. If left to the default, will return the attention mask according | |
to the specific tokenizer's default, defined by the `return_outputs` attribute. | |
[What are attention masks?](../glossary#attention-mask) | |
return_overflowing_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch | |
of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead | |
of returning overflowing tokens. | |
return_special_tokens_mask (`bool`, *optional*, defaults to `False`): | |
Whether or not to return special tokens mask information. | |
return_offsets_mapping (`bool`, *optional*, defaults to `False`): | |
Whether or not to return `(char_start, char_end)` for each token. | |
This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using | |
Python's tokenizer, this method will raise `NotImplementedError`. | |
return_length (`bool`, *optional*, defaults to `False`): | |
Whether or not to return the lengths of the encoded inputs. | |
verbose (`bool`, *optional*, defaults to `True`): | |
Whether or not to print more information and warnings. | |
**kwargs: passed to the `self.tokenize()` method | |
Return: | |
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields: | |
- **input_ids** -- List of token ids to be fed to a model. | |
[What are input IDs?](../glossary#input-ids) | |
- **bbox** -- List of bounding boxes to be fed to a model. | |
- **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or | |
if *"token_type_ids"* is in `self.model_input_names`). | |
[What are token type IDs?](../glossary#token-type-ids) | |
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). | |
[What are attention masks?](../glossary#attention-mask) | |
- **labels** -- List of labels to be fed to a model. (when `word_labels` is specified). | |
- **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and | |
`return_overflowing_tokens=True`). | |
- **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and | |
`return_overflowing_tokens=True`). | |
- **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying | |
regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`). | |
- **length** -- The length of the inputs (when `return_length=True`). | |
""" | |
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} | |
class UdopTokenizer(PreTrainedTokenizer): | |
""" | |
Adapted from [`LayoutXLMTokenizer`] and [`T5Tokenizer`]. Based on | |
[SentencePiece](https://github.com/google/sentencepiece). | |
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
this superclass for more information regarding those methods. | |
Args: | |
vocab_file (`str`): | |
Path to the vocabulary file. | |
eos_token (`str`, *optional*, defaults to `"</s>"`): | |
The end of sequence token. | |
<Tip> | |
When building a sequence using special tokens, this is not the token that is used for the end of sequence. | |
The token used is the `sep_token`. | |
</Tip> | |
unk_token (`str`, *optional*, defaults to `"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
sep_token (`str`, *optional*, defaults to `"</s>"`): | |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
sequence classification or for a text and a question for question answering. It is also used as the last | |
token of a sequence built with special tokens. | |
pad_token (`str`, *optional*, defaults to `"<pad>"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`): | |
The bounding box to use for the special [SEP] token. | |
pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): | |
The bounding box to use for the special [PAD] token. | |
pad_token_label (`int`, *optional*, defaults to -100): | |
The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's | |
CrossEntropyLoss. | |
only_label_first_subword (`bool`, *optional*, defaults to `True`): | |
Whether or not to only label the first subword, in case word labels are provided. | |
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): | |
Additional special tokens used by the tokenizer. | |
sp_model_kwargs (`dict`, *optional*): | |
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for | |
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, | |
to set: | |
- `enable_sampling`: Enable subword regularization. | |
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. | |
- `nbest_size = {0,1}`: No sampling is performed. | |
- `nbest_size > 1`: samples from the nbest_size results. | |
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) | |
using forward-filtering-and-backward-sampling algorithm. | |
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for | |
BPE-dropout. | |
legacy (`bool`, *optional*, defaults to `True`): | |
Whether or not the `legacy` behaviour of the tokenizer should be used. Legacy is before the merge of #24622 | |
which includes fixes to properly handle tokens that appear after special tokens. A simple example: | |
- `legacy=True`: | |
```python | |
>>> from transformers import T5Tokenizer | |
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=True) | |
>>> tokenizer.encode("Hello <extra_id_0>.") | |
[8774, 32099, 3, 5, 1] | |
``` | |
- `legacy=False`: | |
```python | |
>>> from transformers import T5Tokenizer | |
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False) | |
>>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here | |
[8774, 32099, 5, 1] | |
``` | |
Checkout the pull request and the issue [here](https://github.com/huggingface/transformers/pull/24565) for | |
more details. | |
add_prefix_space (`bool`, *optional*, defaults to `True`): | |
Whether or not to add an initial space to the input. This allows to treat the leading word just as any | |
other word. | |
Attributes: | |
sp_model (`SentencePieceProcessor`): | |
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, | |
vocab_file, | |
eos_token="</s>", | |
unk_token="<unk>", | |
sep_token="</s>", | |
pad_token="<pad>", | |
sep_token_box=[1000, 1000, 1000, 1000], | |
pad_token_box=[0, 0, 0, 0], | |
pad_token_label=-100, | |
only_label_first_subword=True, | |
additional_special_tokens=None, | |
sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
legacy=True, | |
add_prefix_space=True, | |
**kwargs, | |
) -> None: | |
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token | |
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token | |
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token | |
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token | |
self.legacy = legacy | |
self.add_prefix_space = add_prefix_space | |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | |
self.vocab_file = vocab_file | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.Load(vocab_file) | |
# additional properties | |
self.sep_token_box = sep_token_box | |
self.pad_token_box = pad_token_box | |
self.pad_token_label = pad_token_label | |
self.only_label_first_subword = only_label_first_subword | |
super().__init__( | |
eos_token=eos_token, | |
unk_token=unk_token, | |
sep_token=sep_token, | |
pad_token=pad_token, | |
sep_token_box=sep_token_box, | |
pad_token_box=pad_token_box, | |
pad_token_label=pad_token_label, | |
only_label_first_subword=only_label_first_subword, | |
additional_special_tokens=additional_special_tokens, | |
sp_model_kwargs=self.sp_model_kwargs, | |
legacy=legacy, | |
add_prefix_space=add_prefix_space, | |
**kwargs, | |
) | |
def vocab_size(self): | |
return len(self.sp_model) | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab | |
def get_vocab(self): | |
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
# normal case: some special tokens | |
if token_ids_1 is None: | |
return ([0] * len(token_ids_0)) + [1] | |
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_sentinel_tokens | |
def get_sentinel_tokens(self): | |
return list( | |
set(filter(lambda x: bool(re.search(r"<extra_id_\d+>", x)) is not None, self.additional_special_tokens)) | |
) | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_sentinel_token_ids | |
def get_sentinel_token_ids(self): | |
return [self.convert_tokens_to_ids(token) for token in self.get_sentinel_tokens()] | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present | |
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: | |
"""Do not add eos again if user already added it.""" | |
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: | |
warnings.warn( | |
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" | |
" eos tokens being added." | |
) | |
return token_ids | |
else: | |
return token_ids + [self.eos_token_id] | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make | |
use of token type ids, therefore a list of zeros is returned. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of zeros. | |
""" | |
eos = [self.eos_token_id] | |
if token_ids_1 is None: | |
return len(token_ids_0 + eos) * [0] | |
return len(token_ids_0 + eos + token_ids_1 + eos) * [0] | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. A sequence has the following format: | |
- single sequence: `X </s>` | |
- pair of sequences: `A </s> B </s>` | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
""" | |
token_ids_0 = self._add_eos_if_not_present(token_ids_0) | |
if token_ids_1 is None: | |
return token_ids_0 | |
else: | |
token_ids_1 = self._add_eos_if_not_present(token_ids_1) | |
return token_ids_0 + token_ids_1 | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__ | |
def __getstate__(self): | |
state = self.__dict__.copy() | |
state["sp_model"] = None | |
return state | |
def __setstate__(self, d): | |
self.__dict__ = d | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.Load(self.vocab_file) | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize | |
def tokenize(self, text: "TextInput", **kwargs) -> List[str]: | |
""" | |
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the | |
first token is special. | |
""" | |
if self.legacy or len(text) == 0: | |
return super().tokenize(text, **kwargs) | |
text = text.replace(SPIECE_UNDERLINE, " ") | |
if self.add_prefix_space: | |
text = SPIECE_UNDERLINE + text | |
tokens = super().tokenize(text, **kwargs) | |
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: | |
tokens = tokens[1:] | |
return tokens | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize | |
def _tokenize(self, text, **kwargs): | |
""" | |
Returns a tokenized string. | |
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any | |
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give | |
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the | |
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. | |
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. | |
""" | |
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")): | |
return self.sp_model.encode(text, out_type=str) | |
# 1. Encode string + prefix ex: "<unk> Hey" | |
tokens = self.sp_model.encode(self.unk_token + text, out_type=str) | |
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] | |
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
return self.sp_model.piece_to_id(token) | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
return self.sp_model.IdToPiece(index) | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.convert_tokens_to_string | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
# since we manually add the prefix space, we have to remove it when decoding | |
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space: | |
tokens[0] = tokens[0][1:] | |
current_sub_tokens = [] | |
out_string = "" | |
prev_is_special = False | |
for token in tokens: | |
# make sure that special tokens are not decoded using sentencepiece model | |
if token in self.all_special_tokens: | |
if not prev_is_special: | |
out_string += " " | |
out_string += self.sp_model.decode(current_sub_tokens) + token | |
prev_is_special = True | |
current_sub_tokens = [] | |
else: | |
current_sub_tokens.append(token) | |
prev_is_special = False | |
out_string += self.sp_model.decode(current_sub_tokens) | |
return out_string.strip() | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
out_vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): | |
copyfile(self.vocab_file, out_vocab_file) | |
elif not os.path.isfile(self.vocab_file): | |
with open(out_vocab_file, "wb") as fi: | |
content_spiece_model = self.sp_model.serialized_model_proto() | |
fi.write(content_spiece_model) | |
return (out_vocab_file,) | |
def __call__( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, | |
boxes: Union[List[List[int]], List[List[List[int]]]] = None, | |
word_labels: Optional[Union[List[int], List[List[int]]]] = None, | |
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
text_pair_target: Optional[ | |
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] | |
] = None, | |
**kwargs, | |
) -> BatchEncoding: | |
if text is None and text_target is None: | |
raise ValueError("You need to specify either `text` or `text_target`.") | |
if text is not None: | |
# The context manager will send the inputs as normal texts and not text_target, but we shouldn't change the | |
# input mode in this case. | |
if not self._in_target_context_manager: | |
self._switch_to_input_mode() | |
encodings = self.call_boxes(text=text, text_pair=text_pair, boxes=boxes, word_labels=word_labels, **kwargs) | |
if text_target is not None: | |
self._switch_to_target_mode() | |
target_encodings = self._call_one(text=text_target, text_pair=text_pair_target, **kwargs) | |
# Leave back tokenizer in input mode | |
self._switch_to_input_mode() | |
if text_target is None: | |
return encodings | |
elif text is None: | |
return target_encodings | |
else: | |
encodings["labels"] = target_encodings["input_ids"] | |
return encodings | |
def call_boxes( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], | |
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, | |
boxes: Union[List[List[int]], List[List[List[int]]]] = None, | |
word_labels: Optional[Union[List[int], List[List[int]]]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
""" | |
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of | |
sequences with word-level normalized bounding boxes and optional labels. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings | |
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of | |
words). | |
text_pair (`List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings | |
(pretokenized string). | |
boxes (`List[List[int]]`, `List[List[List[int]]]`): | |
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale. | |
word_labels (`List[int]`, `List[List[int]]`, *optional*): | |
Word-level integer labels (for token classification tasks such as FUNSD, CORD). | |
""" | |
# Input type checking for clearer error | |
def _is_valid_text_input(t): | |
if isinstance(t, str): | |
# Strings are fine | |
return True | |
elif isinstance(t, (list, tuple)): | |
# List are fine as long as they are... | |
if len(t) == 0: | |
# ... empty | |
return True | |
elif isinstance(t[0], str): | |
# ... list of strings | |
return True | |
elif isinstance(t[0], (list, tuple)): | |
# ... list with an empty list or with a list of strings | |
return len(t[0]) == 0 or isinstance(t[0][0], str) | |
else: | |
return False | |
else: | |
return False | |
if text_pair is not None: | |
# in case text + text_pair are provided, text = questions, text_pair = words | |
if not _is_valid_text_input(text): | |
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") | |
if not isinstance(text_pair, (list, tuple)): | |
raise ValueError( | |
"words must of type `List[str]` (single pretokenized example), " | |
"or `List[List[str]]` (batch of pretokenized examples)." | |
) | |
else: | |
# in case only text is provided => must be words | |
if not isinstance(text, (list, tuple)): | |
raise ValueError( | |
"Words must of type `List[str]` (single pretokenized example), " | |
"or `List[List[str]]` (batch of pretokenized examples)." | |
) | |
if text_pair is not None: | |
is_batched = isinstance(text, (list, tuple)) | |
else: | |
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) | |
words = text if text_pair is None else text_pair | |
if boxes is None: | |
raise ValueError("You must provide corresponding bounding boxes") | |
if is_batched: | |
if len(words) != len(boxes): | |
raise ValueError("You must provide words and boxes for an equal amount of examples") | |
for words_example, boxes_example in zip(words, boxes): | |
if len(words_example) != len(boxes_example): | |
raise ValueError("You must provide as many words as there are bounding boxes") | |
else: | |
if len(words) != len(boxes): | |
raise ValueError("You must provide as many words as there are bounding boxes") | |
if is_batched: | |
if text_pair is not None and len(text) != len(text_pair): | |
raise ValueError( | |
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" | |
f" {len(text_pair)}." | |
) | |
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text | |
is_pair = bool(text_pair is not None) | |
return self.batch_encode_plus_boxes( | |
batch_text_or_text_pairs=batch_text_or_text_pairs, | |
is_pair=is_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
else: | |
return self.encode_plus_boxes( | |
text=text, | |
text_pair=text_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
def batch_encode_plus_boxes( | |
self, | |
batch_text_or_text_pairs: Union[ | |
List[TextInput], | |
List[TextInputPair], | |
List[PreTokenizedInput], | |
], | |
is_pair: bool = None, | |
boxes: Optional[List[List[List[int]]]] = None, | |
word_labels: Optional[List[List[int]]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
is_split_into_words: bool = False, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
""" | |
Tokenize and prepare for the model a list of sequences or a list of pairs of sequences. | |
Args: | |
batch_text_or_text_pairs (`List[str]`, `List[Tuple[str, str]]`, `List[List[str]]`, `List[Tuple[List[str], List[str]]]`, and for not-fast tokenizers, also `List[List[int]]`, `List[Tuple[List[int], List[int]]]`): | |
Batch of sequences or pair of sequences to be encoded. This can be a list of | |
string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see | |
details in `encode_plus`). | |
""" | |
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length' | |
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
verbose=verbose, | |
**kwargs, | |
) | |
return self._batch_encode_plus_boxes( | |
batch_text_or_text_pairs=batch_text_or_text_pairs, | |
is_pair=is_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding_strategy=padding_strategy, | |
truncation_strategy=truncation_strategy, | |
max_length=max_length, | |
stride=stride, | |
is_split_into_words=is_split_into_words, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
def encode_boxes( | |
self, | |
text: Union[TextInput, PreTokenizedInput, EncodedInput], | |
text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[List[int]]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
**kwargs, | |
) -> List[int]: | |
""" | |
Args: | |
Converts a string to a sequence of ids (integer), using the tokenizer and vocabulary. Same as doing | |
`self.convert_tokens_to_ids(self.tokenize(text))`. | |
text (`str`, `List[str]` or `List[int]`): | |
The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the | |
`tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` | |
method). | |
text_pair (`str`, `List[str]` or `List[int]`, *optional*): | |
Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using | |
the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` | |
method). | |
""" | |
encoded_inputs = self.encode_plus_boxes( | |
text, | |
text_pair=text_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
return_tensors=return_tensors, | |
**kwargs, | |
) | |
return encoded_inputs["input_ids"] | |
def encode_plus_boxes( | |
self, | |
text: Union[TextInput, PreTokenizedInput], | |
text_pair: Optional[PreTokenizedInput] = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[List[int]]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
is_split_into_words: bool = False, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
""" | |
Tokenize and prepare for the model a sequence or a pair of sequences. | |
<Tip warning={true}> | |
This method is deprecated, `__call__` should be used instead. | |
</Tip> | |
Args: | |
text (`str`, `List[str]` or (for non-fast tokenizers) `List[int]`): | |
The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the | |
`tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` | |
method). | |
text_pair (`str`, `List[str]` or `List[int]`, *optional*): | |
Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using | |
the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` | |
method). | |
""" | |
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length' | |
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
verbose=verbose, | |
**kwargs, | |
) | |
return self._encode_plus_boxes( | |
text=text, | |
text_pair=text_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding_strategy=padding_strategy, | |
truncation_strategy=truncation_strategy, | |
max_length=max_length, | |
stride=stride, | |
is_split_into_words=is_split_into_words, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
def _batch_encode_plus_boxes( | |
self, | |
batch_text_or_text_pairs: Union[ | |
List[TextInput], | |
List[TextInputPair], | |
List[PreTokenizedInput], | |
], | |
is_pair: bool = None, | |
boxes: Optional[List[List[List[int]]]] = None, | |
word_labels: Optional[List[List[int]]] = None, | |
add_special_tokens: bool = True, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
if return_offsets_mapping: | |
raise NotImplementedError( | |
"return_offset_mapping is not available when using Python tokenizers. " | |
"To use this feature, change your tokenizer to one deriving from " | |
"transformers.PreTrainedTokenizerFast." | |
) | |
batch_outputs = self._batch_prepare_for_model_boxes( | |
batch_text_or_text_pairs=batch_text_or_text_pairs, | |
is_pair=is_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding_strategy=padding_strategy, | |
truncation_strategy=truncation_strategy, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
return_token_type_ids=return_token_type_ids, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_length=return_length, | |
return_tensors=return_tensors, | |
verbose=verbose, | |
) | |
return BatchEncoding(batch_outputs) | |
def _batch_prepare_for_model_boxes( | |
self, | |
batch_text_or_text_pairs, | |
is_pair: bool = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[List[int]]] = None, | |
add_special_tokens: bool = True, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[str] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
) -> BatchEncoding: | |
""" | |
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It | |
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and | |
manages a moving window (with user defined stride) for overflowing tokens | |
Args: | |
batch_ids_pairs: list of tokenized input ids or input ids pairs | |
""" | |
batch_outputs = {} | |
for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)): | |
batch_text_or_text_pair, boxes_example = example | |
outputs = self.prepare_for_model_boxes( | |
batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair, | |
batch_text_or_text_pair[1] if is_pair else None, | |
boxes_example, | |
word_labels=word_labels[idx] if word_labels is not None else None, | |
add_special_tokens=add_special_tokens, | |
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward | |
truncation=truncation_strategy.value, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=None, # we pad in batch afterward | |
return_attention_mask=False, # we pad in batch afterward | |
return_token_type_ids=return_token_type_ids, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_length=return_length, | |
return_tensors=None, # We convert the whole batch to tensors at the end | |
prepend_batch_axis=False, | |
verbose=verbose, | |
) | |
for key, value in outputs.items(): | |
if key not in batch_outputs: | |
batch_outputs[key] = [] | |
batch_outputs[key].append(value) | |
batch_outputs = self.pad( | |
batch_outputs, | |
padding=padding_strategy.value, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
) | |
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) | |
return batch_outputs | |
def _encode_plus_boxes( | |
self, | |
text: Union[TextInput, PreTokenizedInput], | |
text_pair: Optional[PreTokenizedInput] = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[int]] = None, | |
add_special_tokens: bool = True, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
if return_offsets_mapping: | |
raise NotImplementedError( | |
"return_offset_mapping is not available when using Python tokenizers. " | |
"To use this feature, change your tokenizer to one deriving from " | |
"transformers.PreTrainedTokenizerFast. " | |
"More information on available tokenizers at " | |
"https://github.com/huggingface/transformers/pull/2674" | |
) | |
return self.prepare_for_model_boxes( | |
text=text, | |
text_pair=text_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding_strategy.value, | |
truncation=truncation_strategy.value, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
prepend_batch_axis=True, | |
return_attention_mask=return_attention_mask, | |
return_token_type_ids=return_token_type_ids, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_length=return_length, | |
verbose=verbose, | |
) | |
def prepare_for_model_boxes( | |
self, | |
text: Union[TextInput, PreTokenizedInput], | |
text_pair: Optional[PreTokenizedInput] = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[int]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
prepend_batch_axis: bool = False, | |
**kwargs, | |
) -> BatchEncoding: | |
""" | |
Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens, | |
truncates sequences if overflowing while taking into account the special tokens and manages a moving window | |
(with user defined stride) for overflowing tokens. | |
Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into | |
token-level `labels`. The word label is used for the first token of the word, while remaining tokens are | |
labeled with -100, such that they will be ignored by the loss function. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. | |
text_pair (`List[str]` or `List[int]`, *optional*): | |
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a | |
list of list of strings (words of a batch of examples). | |
""" | |
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length' | |
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
verbose=verbose, | |
**kwargs, | |
) | |
tokens = [] | |
pair_tokens = [] | |
token_boxes = [] | |
pair_token_boxes = [] | |
labels = [] | |
if text_pair is None: | |
if word_labels is None: | |
# CASE 1: document image classification (training + inference) + CASE 2: token classification (inference) | |
for word, box in zip(text, boxes): | |
if len(word) < 1: # skip empty words | |
continue | |
word_tokens = self.tokenize(word) | |
tokens.extend(word_tokens) | |
token_boxes.extend([box] * len(word_tokens)) | |
else: | |
# CASE 2: token classification (training) | |
for word, box, label in zip(text, boxes, word_labels): | |
if len(word) < 1: # skip empty words | |
continue | |
word_tokens = self.tokenize(word) | |
tokens.extend(word_tokens) | |
token_boxes.extend([box] * len(word_tokens)) | |
if self.only_label_first_subword: | |
# Use the real label id for the first token of the word, and padding ids for the remaining tokens | |
labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1)) | |
else: | |
labels.extend([label] * len(word_tokens)) | |
else: | |
# CASE 3: document visual question answering (inference) | |
# text = question | |
# text_pair = words | |
tokens = self.tokenize(text) | |
token_boxes = [self.pad_token_box for _ in range(len(tokens))] | |
for word, box in zip(text_pair, boxes): | |
if len(word) < 1: # skip empty words | |
continue | |
word_tokens = self.tokenize(word) | |
pair_tokens.extend(word_tokens) | |
pair_token_boxes.extend([box] * len(word_tokens)) | |
# Create ids + pair_ids | |
ids = self.convert_tokens_to_ids(tokens) | |
pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None | |
# Compute the total size of the returned encodings | |
pair = bool(pair_ids is not None) | |
len_ids = len(ids) | |
len_pair_ids = len(pair_ids) if pair else 0 | |
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) | |
# Truncation: Handle max sequence length | |
overflowing_tokens = [] | |
overflowing_token_boxes = [] | |
overflowing_labels = [] | |
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: | |
( | |
ids, | |
token_boxes, | |
pair_ids, | |
pair_token_boxes, | |
labels, | |
overflowing_tokens, | |
overflowing_token_boxes, | |
overflowing_labels, | |
) = self.truncate_sequences( | |
ids, | |
token_boxes, | |
pair_ids=pair_ids, | |
pair_token_boxes=pair_token_boxes, | |
labels=labels, | |
num_tokens_to_remove=total_len - max_length, | |
truncation_strategy=truncation_strategy, | |
stride=stride, | |
) | |
if return_token_type_ids and not add_special_tokens: | |
raise ValueError( | |
"Asking to return token_type_ids while setting add_special_tokens to False " | |
"results in an undefined behavior. Please set add_special_tokens to True or " | |
"set return_token_type_ids to None." | |
) | |
# Load from model defaults | |
if return_token_type_ids is None: | |
return_token_type_ids = "token_type_ids" in self.model_input_names | |
if return_attention_mask is None: | |
return_attention_mask = "attention_mask" in self.model_input_names | |
encoded_inputs = {} | |
if return_overflowing_tokens: | |
encoded_inputs["overflowing_tokens"] = overflowing_tokens | |
encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes | |
encoded_inputs["overflowing_labels"] = overflowing_labels | |
encoded_inputs["num_truncated_tokens"] = total_len - max_length | |
# Add special tokens | |
if add_special_tokens: | |
sequence = self.build_inputs_with_special_tokens(ids, pair_ids) | |
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) | |
token_boxes = token_boxes + [self.sep_token_box] | |
if pair_token_boxes: | |
pair_token_boxes = pair_token_boxes + [self.sep_token_box] | |
if labels: | |
labels = labels + [self.pad_token_label] | |
else: | |
sequence = ids + pair_ids if pair else ids | |
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) | |
# Build output dictionary | |
encoded_inputs["input_ids"] = sequence | |
encoded_inputs["bbox"] = token_boxes + pair_token_boxes | |
if return_token_type_ids: | |
encoded_inputs["token_type_ids"] = token_type_ids | |
if return_special_tokens_mask: | |
if add_special_tokens: | |
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) | |
else: | |
encoded_inputs["special_tokens_mask"] = [0] * len(sequence) | |
if labels: | |
encoded_inputs["labels"] = labels | |
# Check lengths | |
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) | |
# Padding | |
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: | |
encoded_inputs = self.pad( | |
encoded_inputs, | |
max_length=max_length, | |
padding=padding_strategy.value, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
) | |
if return_length: | |
encoded_inputs["length"] = len(encoded_inputs["input_ids"]) | |
batch_outputs = BatchEncoding( | |
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis | |
) | |
return batch_outputs | |
# Copied from transformers.models.layoutxlm.tokenization_layoutxlm.LayoutXLMTokenizer.truncate_sequences | |
def truncate_sequences( | |
self, | |
ids: List[int], | |
token_boxes: List[List[int]], | |
pair_ids: Optional[List[int]] = None, | |
pair_token_boxes: Optional[List[List[int]]] = None, | |
labels: Optional[List[int]] = None, | |
num_tokens_to_remove: int = 0, | |
truncation_strategy: Union[str, TruncationStrategy] = "longest_first", | |
stride: int = 0, | |
) -> Tuple[List[int], List[int], List[int]]: | |
""" | |
Truncates a sequence pair in-place following the strategy. | |
Args: | |
ids (`List[int]`): | |
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and | |
`convert_tokens_to_ids` methods. | |
token_boxes (`List[List[int]]`): | |
Bounding boxes of the first sequence. | |
pair_ids (`List[int]`, *optional*): | |
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` | |
and `convert_tokens_to_ids` methods. | |
pair_token_boxes (`List[List[int]]`, *optional*): | |
Bounding boxes of the second sequence. | |
labels (`List[int]`, *optional*): | |
Labels of the first sequence (for token classification tasks). | |
num_tokens_to_remove (`int`, *optional*, defaults to 0): | |
Number of tokens to remove using the truncation strategy. | |
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): | |
The strategy to follow for truncation. Can be: | |
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will truncate | |
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a | |
batch of pairs) is provided. | |
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater | |
than the model maximum admissible input size). | |
stride (`int`, *optional*, defaults to 0): | |
If set to a positive number, the overflowing tokens returned will contain some tokens from the main | |
sequence returned. The value of this argument defines the number of additional tokens. | |
Returns: | |
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of | |
overflowing tokens. | |
""" | |
if num_tokens_to_remove <= 0: | |
return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], [] | |
if not isinstance(truncation_strategy, TruncationStrategy): | |
truncation_strategy = TruncationStrategy(truncation_strategy) | |
overflowing_tokens = [] | |
overflowing_token_boxes = [] | |
overflowing_labels = [] | |
if truncation_strategy == TruncationStrategy.LONGEST_FIRST: | |
for _ in range(num_tokens_to_remove): | |
if pair_ids is None or len(ids) > len(pair_ids): | |
if not overflowing_tokens: | |
window_len = min(len(ids), stride + 1) | |
else: | |
window_len = 1 | |
overflowing_tokens.extend(ids[-window_len:]) | |
overflowing_token_boxes.extend(token_boxes[-window_len:]) | |
overflowing_labels.extend(labels[-window_len:]) | |
ids = ids[:-1] | |
token_boxes = token_boxes[:-1] | |
labels = labels[:-1] | |
else: | |
if not overflowing_tokens: | |
window_len = min(len(pair_ids), stride + 1) | |
else: | |
window_len = 1 | |
overflowing_tokens.extend(pair_ids[-window_len:]) | |
overflowing_token_boxes.extend(pair_token_boxes[-window_len:]) | |
pair_ids = pair_ids[:-1] | |
pair_token_boxes = pair_token_boxes[:-1] | |
elif truncation_strategy == TruncationStrategy.ONLY_FIRST: | |
if len(ids) > num_tokens_to_remove: | |
window_len = min(len(ids), stride + num_tokens_to_remove) | |
overflowing_tokens = ids[-window_len:] | |
overflowing_token_boxes = token_boxes[-window_len:] | |
overflowing_labels = labels[-window_len:] | |
ids = ids[:-num_tokens_to_remove] | |
token_boxes = token_boxes[:-num_tokens_to_remove] | |
labels = labels[:-num_tokens_to_remove] | |
else: | |
logger.error( | |
f"We need to remove {num_tokens_to_remove} to truncate the input " | |
f"but the first sequence has a length {len(ids)}. " | |
f"Please select another truncation strategy than {truncation_strategy}, " | |
"for instance 'longest_first' or 'only_second'." | |
) | |
elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: | |
if len(pair_ids) > num_tokens_to_remove: | |
window_len = min(len(pair_ids), stride + num_tokens_to_remove) | |
overflowing_tokens = pair_ids[-window_len:] | |
overflowing_token_boxes = pair_token_boxes[-window_len:] | |
pair_ids = pair_ids[:-num_tokens_to_remove] | |
pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove] | |
else: | |
logger.error( | |
f"We need to remove {num_tokens_to_remove} to truncate the input " | |
f"but the second sequence has a length {len(pair_ids)}. " | |
f"Please select another truncation strategy than {truncation_strategy}, " | |
"for instance 'longest_first' or 'only_first'." | |
) | |
return ( | |
ids, | |
token_boxes, | |
pair_ids, | |
pair_token_boxes, | |
labels, | |
overflowing_tokens, | |
overflowing_token_boxes, | |
overflowing_labels, | |
) | |
# Copied from transformers.models.layoutxlm.tokenization_layoutxlm.LayoutXLMTokenizer._pad | |
def _pad( | |
self, | |
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], | |
max_length: Optional[int] = None, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
pad_to_multiple_of: Optional[int] = None, | |
return_attention_mask: Optional[bool] = None, | |
) -> dict: | |
""" | |
Pad encoded inputs (on left/right and up to predefined length or max length in the batch) | |
Args: | |
encoded_inputs: | |
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). | |
max_length: maximum length of the returned list and optionally padding length (see below). | |
Will truncate by taking into account the special tokens. | |
padding_strategy: PaddingStrategy to use for padding. | |
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch | |
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default) | |
- PaddingStrategy.DO_NOT_PAD: Do not pad | |
The tokenizer padding sides are defined in self.padding_side: | |
- 'left': pads on the left of the sequences | |
- 'right': pads on the right of the sequences | |
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. | |
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability | |
`>= 7.5` (Volta). | |
return_attention_mask: | |
(optional) Set to False to avoid returning attention mask (default: set to model specifics) | |
""" | |
# Load from model defaults | |
if return_attention_mask is None: | |
return_attention_mask = "attention_mask" in self.model_input_names | |
required_input = encoded_inputs[self.model_input_names[0]] | |
if padding_strategy == PaddingStrategy.LONGEST: | |
max_length = len(required_input) | |
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): | |
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of | |
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length | |
# Initialize attention mask if not present. | |
if return_attention_mask and "attention_mask" not in encoded_inputs: | |
encoded_inputs["attention_mask"] = [1] * len(required_input) | |
if needs_to_be_padded: | |
difference = max_length - len(required_input) | |
if self.padding_side == "right": | |
if return_attention_mask: | |
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference | |
if "token_type_ids" in encoded_inputs: | |
encoded_inputs["token_type_ids"] = ( | |
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference | |
) | |
if "bbox" in encoded_inputs: | |
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference | |
if "labels" in encoded_inputs: | |
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference | |
if "special_tokens_mask" in encoded_inputs: | |
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference | |
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference | |
elif self.padding_side == "left": | |
if return_attention_mask: | |
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] | |
if "token_type_ids" in encoded_inputs: | |
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ | |
"token_type_ids" | |
] | |
if "bbox" in encoded_inputs: | |
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"] | |
if "labels" in encoded_inputs: | |
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] | |
if "special_tokens_mask" in encoded_inputs: | |
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] | |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input | |
else: | |
raise ValueError("Invalid padding strategy:" + str(self.padding_side)) | |
return encoded_inputs | |