Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/umt5
/configuration_umt5.py
# coding=utf-8 | |
# Copyright 2023, The T5 Authors and HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""UMT5 model configuration""" | |
from typing import Mapping | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxSeq2SeqConfigWithPast | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class UMT5Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`UMT5Model`]. It is used to instantiate a UMT5 | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the UMT5 | |
[google/umt5-small](https://huggingface.co/google/umt5-small) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Arguments: | |
vocab_size (`int`, *optional*, defaults to 250112): | |
Vocabulary size of the UMT5 model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`UMT5Model`] or [`TFUMT5Model`]. | |
d_model (`int`, *optional*, defaults to 512): | |
Size of the encoder layers and the pooler layer. | |
d_kv (`int`, *optional*, defaults to 64): | |
Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model // | |
num_heads`. | |
d_ff (`int`, *optional*, defaults to 1024): | |
Size of the intermediate feed forward layer in each `UMT5Block`. | |
num_layers (`int`, *optional*, defaults to 8): | |
Number of hidden layers in the Transformer encoder. | |
num_decoder_layers (`int`, *optional*): | |
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. | |
num_heads (`int`, *optional*, defaults to 6): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
relative_attention_num_buckets (`int`, *optional*, defaults to 32): | |
The number of buckets to use for each attention layer. | |
relative_attention_max_distance (`int`, *optional*, defaults to 128): | |
The maximum distance of the longer sequences for the bucket separation. | |
dropout_rate (`float`, *optional*, defaults to 0.1): | |
The ratio for all dropout layers. | |
classifier_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for classifier. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-6): | |
The epsilon used by the layer normalization layers. | |
initializer_factor (`float`, *optional*, defaults to 1): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`): | |
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
""" | |
model_type = "umt5" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} | |
def __init__( | |
self, | |
vocab_size=250112, | |
d_model=512, | |
d_kv=64, | |
d_ff=1024, | |
num_layers=8, | |
num_decoder_layers=None, | |
num_heads=6, | |
relative_attention_num_buckets=32, | |
relative_attention_max_distance=128, | |
dropout_rate=0.1, | |
layer_norm_epsilon=1e-6, | |
initializer_factor=1.0, | |
feed_forward_proj="gated-gelu", | |
is_encoder_decoder=True, | |
use_cache=True, | |
tokenizer_class="T5Tokenizer", | |
tie_word_embeddings=True, | |
pad_token_id=0, | |
eos_token_id=1, | |
decoder_start_token_id=0, | |
classifier_dropout=0.0, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.d_model = d_model | |
self.d_kv = d_kv | |
self.d_ff = d_ff | |
self.num_layers = num_layers | |
self.num_decoder_layers = ( | |
num_decoder_layers if num_decoder_layers is not None else self.num_layers | |
) # default = symmetry | |
self.num_heads = num_heads | |
self.relative_attention_num_buckets = relative_attention_num_buckets | |
self.relative_attention_max_distance = relative_attention_max_distance | |
self.dropout_rate = dropout_rate | |
self.classifier_dropout = classifier_dropout | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_factor = initializer_factor | |
self.feed_forward_proj = feed_forward_proj | |
self.use_cache = use_cache | |
act_info = self.feed_forward_proj.split("-") | |
self.dense_act_fn = act_info[-1] | |
self.is_gated_act = act_info[0] == "gated" | |
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: | |
raise ValueError( | |
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. " | |
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " | |
"'gated-gelu' or 'relu'" | |
) | |
if feed_forward_proj == "gated-gelu": | |
self.dense_act_fn = "gelu_new" | |
super().__init__( | |
is_encoder_decoder=is_encoder_decoder, | |
tokenizer_class=tokenizer_class, | |
tie_word_embeddings=tie_word_embeddings, | |
pad_token_id=pad_token_id, | |
eos_token_id=eos_token_id, | |
decoder_start_token_id=decoder_start_token_id, | |
**kwargs, | |
) | |
class UMT5OnnxConfig(OnnxSeq2SeqConfigWithPast): | |
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
common_inputs = { | |
"input_ids": {0: "batch", 1: "encoder_sequence"}, | |
"attention_mask": {0: "batch", 1: "encoder_sequence"}, | |
} | |
if self.use_past: | |
common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence" | |
common_inputs["decoder_input_ids"] = {0: "batch"} | |
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} | |
else: | |
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} | |
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} | |
if self.use_past: | |
self.fill_with_past_key_values_(common_inputs, direction="inputs") | |
return common_inputs | |
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset | |
def default_onnx_opset(self) -> int: | |
return 13 | |
def atol_for_validation(self) -> float: | |
return 5e-4 | |