Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/umt5
/modeling_umt5.py
# coding=utf-8 | |
# Copyright 2023 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch UMT5 model.""" | |
import copy | |
import math | |
from typing import List, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPastAndCrossAttentions, | |
Seq2SeqLMOutput, | |
Seq2SeqModelOutput, | |
Seq2SeqQuestionAnsweringModelOutput, | |
Seq2SeqSequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
DUMMY_INPUTS, | |
DUMMY_MASK, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_torch_fx_proxy, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_umt5 import UMT5Config | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "UMT5Config" | |
_CHECKPOINT_FOR_DOC = "google/umt5-small" | |
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->UMT5 | |
class UMT5LayerNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
Construct a layernorm module in the UMT5 style. No bias and no subtraction of mean. | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
# UMT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean | |
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated | |
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for | |
# half-precision inputs is done in fp32 | |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
# convert into half-precision if necessary | |
if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
hidden_states = hidden_states.to(self.weight.dtype) | |
return self.weight * hidden_states | |
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->UMT5 | |
class UMT5DenseActDense(nn.Module): | |
def __init__(self, config: UMT5Config): | |
super().__init__() | |
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = ACT2FN[config.dense_act_fn] | |
def forward(self, hidden_states): | |
hidden_states = self.wi(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
if ( | |
isinstance(self.wo.weight, torch.Tensor) | |
and hidden_states.dtype != self.wo.weight.dtype | |
and self.wo.weight.dtype != torch.int8 | |
): | |
hidden_states = hidden_states.to(self.wo.weight.dtype) | |
hidden_states = self.wo(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->UMT5 | |
class UMT5DenseGatedActDense(nn.Module): | |
def __init__(self, config: UMT5Config): | |
super().__init__() | |
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = ACT2FN[config.dense_act_fn] | |
def forward(self, hidden_states): | |
hidden_gelu = self.act(self.wi_0(hidden_states)) | |
hidden_linear = self.wi_1(hidden_states) | |
hidden_states = hidden_gelu * hidden_linear | |
hidden_states = self.dropout(hidden_states) | |
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. | |
# See https://github.com/huggingface/transformers/issues/20287 | |
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` | |
if ( | |
isinstance(self.wo.weight, torch.Tensor) | |
and hidden_states.dtype != self.wo.weight.dtype | |
and self.wo.weight.dtype != torch.int8 | |
): | |
hidden_states = hidden_states.to(self.wo.weight.dtype) | |
hidden_states = self.wo(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->UMT5 | |
class UMT5LayerFF(nn.Module): | |
def __init__(self, config: UMT5Config): | |
super().__init__() | |
if config.is_gated_act: | |
self.DenseReluDense = UMT5DenseGatedActDense(config) | |
else: | |
self.DenseReluDense = UMT5DenseActDense(config) | |
self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward(self, hidden_states): | |
forwarded_states = self.layer_norm(hidden_states) | |
forwarded_states = self.DenseReluDense(forwarded_states) | |
hidden_states = hidden_states + self.dropout(forwarded_states) | |
return hidden_states | |
class UMT5Attention(nn.Module): | |
""" | |
T5's attention using relative_attention_bias. | |
""" | |
def __init__(self, config, has_relative_attention_bias=False): | |
super().__init__() | |
self.is_decoder = config.is_decoder | |
self.has_relative_attention_bias = has_relative_attention_bias | |
self.relative_attention_num_buckets = config.relative_attention_num_buckets | |
self.relative_attention_max_distance = config.relative_attention_max_distance | |
self.d_model = config.d_model | |
self.key_value_proj_dim = config.d_kv | |
self.n_heads = config.num_heads | |
self.dropout = config.dropout_rate | |
self.inner_dim = self.n_heads * self.key_value_proj_dim | |
# Mesh TensorFlow initialization to avoid scaling before softmax | |
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) | |
if self.has_relative_attention_bias: | |
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) | |
self.pruned_heads = set() | |
def _shape(self, projection: torch.Tensor) -> torch.Tensor: | |
new_projection_shape = projection.size()[:-1] + (self.n_heads, self.key_value_proj_dim) | |
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) | |
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) | |
return new_projection | |
def _relative_position_bucket(self, relative_position): | |
""" | |
Adapted from Mesh Tensorflow: | |
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | |
Translate relative position to a bucket number for relative attention. The relative position is defined as | |
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | |
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | |
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | |
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | |
This should allow for more graceful generalization to longer sequences than the model has been trained on | |
Args: | |
relative_position: an int32 Tensor | |
bidirectional: a boolean - whether the attention is bidirectional | |
num_buckets: an integer | |
max_distance: an integer | |
Returns: | |
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | |
""" | |
relative_buckets = 0 | |
num_buckets = self.relative_attention_num_buckets | |
max_distance = self.relative_attention_max_distance | |
if not self.is_decoder: | |
num_buckets //= 2 | |
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | |
relative_position = torch.abs(relative_position) | |
else: | |
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) | |
# now relative_position is in the range [0, inf) | |
# half of the buckets are for exact increments in positions | |
max_exact = num_buckets // 2 | |
is_small = relative_position < max_exact | |
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
log_ratio = torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) | |
log_ratio = log_ratio * (num_buckets - max_exact) | |
relative_position_if_large = max_exact + log_ratio.to(torch.long) | |
relative_position_if_large = torch.min( | |
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | |
) | |
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) | |
return relative_buckets | |
def compute_bias(self, query_length, key_length, device=None): | |
"""Compute binned relative position bias""" | |
if device is None: | |
device = self.relative_attention_bias.weight.device | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position # shape (query_length, key_length) | |
relative_position_bucket = self._relative_position_bucket(relative_position) | |
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) | |
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) | |
return values | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
): | |
is_cross_attention = encoder_hidden_states is not None | |
batch_size, seq_length = hidden_states.shape[:2] | |
# use encoder_hidden_states if cross attention | |
current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
# checking that the `sequence_length` of the `past_key_value` is the same as the he provided | |
# `encoder_hidden_states` to support prefix tuning | |
if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
else: | |
key_states = self._shape(self.k(current_states)) | |
value_states = self._shape(self.v(current_states)) | |
if past_key_value is not None and not is_cross_attention: | |
# reuse k, v, self_attention | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
query_states = self._shape(self.q(hidden_states)) | |
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) | |
# compute positional bias | |
if self.has_relative_attention_bias: | |
query_length = seq_length | |
if past_key_value is not None: | |
query_length += past_key_value[0].shape[2] | |
position_bias = self.compute_bias(query_length, key_states.size(2), device=attention_scores.device) | |
else: | |
position_bias = torch.zeros( | |
(1, self.n_heads, seq_length, key_states.size(2)), | |
device=attention_scores.device, | |
dtype=attention_scores.dtype, | |
requires_grad=self.training, | |
) | |
if past_key_value is not None: | |
position_bias = position_bias[:, :, -hidden_states.size(1) :, :] | |
if attention_mask is not None: | |
position_bias = position_bias + attention_mask # (batch_size, n_heads, seq_length, key_length) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
attention_scores += position_bias | |
# (batch_size, n_heads, seq_length, key_length) | |
attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).type_as(attention_scores) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
# Mask heads if we want to | |
if layer_head_mask is not None: | |
attn_weights = attn_weights * layer_head_mask | |
# attn_output = torch.bmm(attn_probs, value_states) ? | |
context_states = torch.matmul(attn_weights, value_states) | |
# attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) ? | |
context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1) | |
attn_output = self.o(context_states) | |
return attn_output, attn_weights, past_key_value | |
class UMT5LayerSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.SelfAttention = UMT5Attention(config, has_relative_attention_bias=True) | |
self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.SelfAttention( | |
normed_hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
) | |
hidden_states = hidden_states + self.dropout(attention_output[0]) | |
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
class UMT5LayerCrossAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.EncDecAttention = UMT5Attention(config, has_relative_attention_bias=False) | |
self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.EncDecAttention( | |
normed_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
) | |
layer_output = hidden_states + self.dropout(attention_output[0]) | |
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
class UMT5Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.is_decoder = config.is_decoder | |
self.layer = nn.ModuleList() | |
self.layer.append(UMT5LayerSelfAttention(config)) | |
if self.is_decoder: | |
self.layer.append(UMT5LayerCrossAttention(config)) | |
self.layer.append(UMT5LayerFF(config)) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
layer_head_mask=None, | |
cross_attn_layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
# Self Attention | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
hidden_states, self_attn_weights, present_key_value = self.layer[0]( | |
hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
past_key_value=self_attn_past_key_value, | |
) | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
max_dtype = torch.finfo(hidden_states.dtype).max | |
clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
# Cross-Attention Block | |
cross_attn_present_key_value = None | |
cross_attn_weights = None | |
do_cross_attention = self.is_decoder and encoder_hidden_states is not None | |
if do_cross_attention: | |
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple | |
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.layer[1]( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
) | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
max_dtype = torch.finfo(hidden_states.dtype).max | |
clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
present_key_value += cross_attn_present_key_value | |
# Apply Feed Forward layer | |
hidden_states = self.layer[-1](hidden_states) | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
max_dtype = torch.finfo(hidden_states.dtype).max | |
clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
outputs = ( | |
hidden_states, | |
present_key_value, | |
) | |
if output_attentions: | |
outputs += (self_attn_weights, cross_attn_weights) | |
return outputs | |
# Copied from transformers.models.t5.modeling_t5.T5ClassificationHead with T5->UMT5 | |
class UMT5ClassificationHead(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config: UMT5Config): | |
super().__init__() | |
self.dense = nn.Linear(config.d_model, config.d_model) | |
self.dropout = nn.Dropout(p=config.classifier_dropout) | |
self.out_proj = nn.Linear(config.d_model, config.num_labels) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.dense(hidden_states) | |
hidden_states = torch.tanh(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.out_proj(hidden_states) | |
return hidden_states | |
class UMT5PreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = UMT5Config | |
base_model_prefix = "transformer" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["UMT5Block"] | |
_keep_in_fp32_modules = ["wo"] | |
def dummy_inputs(self): | |
input_ids = torch.tensor(DUMMY_INPUTS) | |
input_mask = torch.tensor(DUMMY_MASK) | |
dummy_inputs = { | |
"decoder_input_ids": input_ids, | |
"input_ids": input_ids, | |
"decoder_attention_mask": input_mask, | |
} | |
return dummy_inputs | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
factor = self.config.initializer_factor # Used for testing weights initialization | |
if isinstance(module, UMT5LayerNorm): | |
module.weight.data.fill_(factor * 1.0) | |
elif isinstance( | |
module, | |
( | |
UMT5Model, | |
UMT5ForConditionalGeneration, | |
UMT5EncoderModel, | |
UMT5ForQuestionAnswering, | |
), | |
): | |
# Mesh TensorFlow embeddings initialization | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 | |
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: | |
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
if hasattr(module, "qa_outputs"): | |
module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
module.qa_outputs.bias.data.zero_() | |
elif isinstance(module, UMT5ForTokenClassification): | |
if hasattr(module, "classifier"): | |
module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
module.classifier.bias.data.zero_() | |
elif isinstance(module, UMT5ClassificationHead): | |
module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.dense, "bias") and module.dense.bias is not None: | |
module.dense.bias.data.zero_() | |
module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None: | |
module.out_proj.bias.data.zero_() | |
elif isinstance(module, UMT5DenseActDense): | |
# Mesh TensorFlow FF initialization | |
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 | |
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 | |
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.wi, "bias") and module.wi.bias is not None: | |
module.wi.bias.data.zero_() | |
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | |
if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
module.wo.bias.data.zero_() | |
elif isinstance(module, UMT5DenseGatedActDense): | |
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: | |
module.wi_0.bias.data.zero_() | |
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: | |
module.wi_1.bias.data.zero_() | |
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | |
if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
module.wo.bias.data.zero_() | |
elif isinstance(module, UMT5Attention): | |
# Mesh TensorFlow attention initialization to avoid scaling before softmax | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 | |
d_model = self.config.d_model | |
key_value_proj_dim = self.config.d_kv | |
n_heads = self.config.num_heads | |
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) | |
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | |
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | |
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) | |
if module.has_relative_attention_bias: | |
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) | |
def _shift_right(self, input_ids): | |
decoder_start_token_id = self.config.decoder_start_token_id | |
pad_token_id = self.config.pad_token_id | |
if decoder_start_token_id is None: | |
raise ValueError( | |
"self.model.config.decoder_start_token_id has to be defined. In UMT5 it is usually set to the pad_token_id. " | |
"See UMT5 docs for more information." | |
) | |
# shift inputs to the right | |
if is_torch_fx_proxy(input_ids): | |
# Item assignment is not supported natively for proxies. | |
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) | |
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) | |
else: | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
shifted_input_ids[..., 0] = decoder_start_token_id | |
if pad_token_id is None: | |
raise ValueError("self.model.config.pad_token_id has to be defined.") | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
return shifted_input_ids | |
class UMT5Stack(UMT5PreTrainedModel): | |
def __init__(self, config, embed_tokens=None): | |
super().__init__(config) | |
self.embed_tokens = embed_tokens | |
self.is_decoder = config.is_decoder | |
self.block = nn.ModuleList([UMT5Block(config) for i in range(config.num_layers)]) | |
self.final_layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
# Initialize weights and apply final processing | |
self.gradient_checkpointing = False | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, new_embeddings): | |
self.embed_tokens = new_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
inputs_embeds=None, | |
head_mask=None, | |
cross_attn_head_mask=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
err_msg_prefix = "decoder_" if self.is_decoder else "" | |
raise ValueError( | |
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" | |
) | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
err_msg_prefix = "decoder_" if self.is_decoder else "" | |
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") | |
if inputs_embeds is None: | |
if self.embed_tokens is None: | |
raise ValueError("You have to initialize the model with valid token embeddings") | |
inputs_embeds = self.embed_tokens(input_ids) | |
batch_size, seq_length = input_shape | |
# required mask seq length can be calculated via length of past | |
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length | |
if use_cache is True: | |
if not self.is_decoder: | |
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") | |
if attention_mask is None: | |
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) | |
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: | |
encoder_seq_length = encoder_hidden_states.shape[1] | |
encoder_attention_mask = torch.ones( | |
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long | |
) | |
# initialize past_key_values with `None` if past does not exist | |
if past_key_values is None: | |
past_key_values = [None] * len(self.block) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.is_decoder and encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# Prepare head mask if needed | |
head_mask = self.get_head_mask(head_mask, self.config.num_layers) | |
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) | |
present_key_value_states = () if use_cache else None | |
all_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
all_cross_attentions = () if output_attentions and self.is_decoder else None | |
hidden_states = self.dropout(inputs_embeds) | |
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): | |
layer_head_mask = head_mask[i] | |
cross_attn_layer_head_mask = cross_attn_head_mask[i] | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.forward, | |
hidden_states, | |
extended_attention_mask, | |
encoder_hidden_states, | |
encoder_extended_attention_mask, | |
layer_head_mask, | |
cross_attn_layer_head_mask, | |
None, # past_key_value is always None with gradient checkpointing | |
use_cache, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask=extended_attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
layer_head_mask=layer_head_mask, | |
cross_attn_layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
present_key_value_states += (layer_outputs[1],) | |
if output_attentions: | |
all_attentions += (layer_outputs[2],) | |
if self.is_decoder: | |
all_cross_attentions += (layer_outputs[3],) | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
# Add last layer | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
present_key_value_states, | |
all_hidden_states, | |
all_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=present_key_value_states, | |
hidden_states=all_hidden_states, | |
attentions=all_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
UMT5_START_DOCSTRING = r""" | |
The UMT5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text | |
Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan | |
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a | |
text-to-text denoising generative setting. | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`UMT5Config`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
UMT5_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so | |
you should be able to pad the inputs on both the right and the left. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for detail. | |
[What are input IDs?](../glossary#input-ids) | |
To know more on how to prepare `input_ids` for pretraining take a look a [UMT5 Training](./umt5#training). | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) | |
UMT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` | |
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). | |
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [UMT5 | |
Training](./umt5#training). | |
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in | |
`[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at | |
the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
input (see `past_key_values`). This is useful if you want more control over how to convert | |
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value | |
of `inputs_embeds`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
UMT5_ENCODER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so | |
you should be able to pad the inputs on both the right and the left. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for detail. | |
To know more on how to prepare `input_ids` for pretraining take a look a [UMT5 Training](./umt5#training). | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class UMT5Model(UMT5PreTrainedModel): | |
r""" | |
Examples: | |
```python | |
>>> from transformers import UMT5Model, AutoTokenizer | |
>>> model = UMT5Model.from_pretrained("google/umt5-small") | |
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small") | |
>>> noisy_text = "UN Offizier sagt, dass weiter <extra_id_0> werden muss in Syrien." | |
>>> label = "<extra_id_0> verhandelt" | |
>>> inputs = tokenizer(inputs, return_tensors="pt") | |
>>> labels = tokenizer(label=label, return_tensors="pt") | |
>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"]) | |
>>> hidden_states = outputs.last_hidden_state | |
```""" | |
model_type = "umt5" | |
config_class = UMT5Config | |
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.is_decoder = False | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = UMT5Stack(encoder_config, self.shared) | |
decoder_config = copy.deepcopy(config) | |
decoder_config.is_decoder = True | |
decoder_config.is_encoder_decoder = False | |
decoder_config.num_layers = config.num_decoder_layers | |
self.decoder = UMT5Stack(decoder_config, self.shared) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.t5.modeling_t5.T5Model.get_input_embeddings | |
def get_input_embeddings(self): | |
return self.shared | |
# Copied from transformers.models.t5.modeling_t5.T5Model.set_input_embeddings | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
self.decoder.set_input_embeddings(new_embeddings) | |
# Copied from transformers.models.t5.modeling_t5.T5Model._tie_weights | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | |
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) | |
# Copied from transformers.models.t5.modeling_t5.T5Model.get_encoder | |
def get_encoder(self): | |
return self.encoder | |
# Copied from transformers.models.t5.modeling_t5.T5Model.get_decoder | |
def get_decoder(self): | |
return self.decoder | |
# Copied from transformers.models.t5.modeling_t5.T5Model._prune_heads | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
decoder_head_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
decoder_inputs_embeds: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, UMT5Model | |
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small") | |
>>> model = UMT5Model.from_pretrained("google/umt5-small") | |
>>> input_ids = tokenizer( | |
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" | |
... ).input_ids # Batch size 1 | |
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 | |
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for UMT5Model. | |
>>> # This is not needed for torch's UMT5ForConditionalGeneration as it does this internally using labels arg. | |
>>> decoder_input_ids = model._shift_right(decoder_input_ids) | |
>>> # forward pass | |
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) | |
>>> last_hidden_states = outputs.last_hidden_state | |
```""" | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# Encode if needed (training, first prediction pass) | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
hidden_states = encoder_outputs[0] | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
past_key_values=past_key_values, | |
encoder_hidden_states=hidden_states, | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return decoder_outputs + encoder_outputs | |
return Seq2SeqModelOutput( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
class UMT5ForConditionalGeneration(UMT5PreTrainedModel): | |
r""" | |
Examples: | |
```python | |
>>> from transformers import UMT5ForConditionalGeneration, AutoTokenizer | |
>>> model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small") | |
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small") | |
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." | |
>>> summary = "Weiter Verhandlung in Syrien." | |
>>> inputs = tokenizer(article, text_target=summary, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> loss = outputs.loss | |
```""" | |
model_type = "umt5" | |
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.model_dim = config.d_model | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.is_decoder = False | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = UMT5Stack(encoder_config, self.shared) | |
decoder_config = copy.deepcopy(config) | |
decoder_config.is_decoder = True | |
decoder_config.is_encoder_decoder = False | |
decoder_config.num_layers = config.num_decoder_layers | |
self.decoder = UMT5Stack(decoder_config, self.shared) | |
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_input_embeddings | |
def get_input_embeddings(self): | |
return self.shared | |
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_input_embeddings | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
self.decoder.set_input_embeddings(new_embeddings) | |
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration._tie_weights | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | |
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) | |
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_output_embeddings | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_output_embeddings | |
def get_output_embeddings(self): | |
return self.lm_head | |
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_encoder | |
def get_encoder(self): | |
return self.encoder | |
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_decoder | |
def get_decoder(self): | |
return self.decoder | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
decoder_head_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for | |
labels in `[0, ..., config.vocab_size]` | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer, UMT5ForConditionalGeneration | |
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small") | |
>>> model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small") | |
>>> # training | |
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids | |
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids | |
>>> outputs = model(input_ids=input_ids, labels=labels) | |
>>> loss = outputs.loss | |
>>> logits = outputs.logits | |
>>> # inference | |
>>> input_ids = tokenizer("Studies have shown that <extra_id_0> good for you", return_tensors="pt").input_ids | |
>>> outputs = model.generate(input_ids) | |
>>> tokenizer.decode(outputs[0], skip_special_tokens=True) | |
```""" | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# Encode if needed (training, first prediction pass) | |
if encoder_outputs is None: | |
# Convert encoder inputs in embeddings if needed | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
hidden_states = encoder_outputs[0] | |
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: | |
# get decoder inputs from shifting lm labels to the right | |
decoder_input_ids = self._shift_right(labels) | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
past_key_values=past_key_values, | |
encoder_hidden_states=hidden_states, | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = decoder_outputs[0] | |
if self.config.tie_word_embeddings: | |
# Rescale output before projecting on vocab | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 | |
sequence_output = sequence_output * (self.model_dim**-0.5) | |
lm_logits = self.lm_head(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=-100) | |
# move labels to correct device to enable PP | |
labels = labels.to(lm_logits.device) | |
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) | |
if not return_dict: | |
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs | |
return ((loss,) + output) if loss is not None else output | |
return Seq2SeqLMOutput( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_inputs_for_generation | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
decoder_attention_mask=None, | |
cross_attn_head_mask=None, | |
use_cache=None, | |
encoder_outputs=None, | |
**kwargs, | |
): | |
# cut decoder_input_ids if past_key_values is used | |
if past_key_values is not None: | |
past_length = past_key_values[0][0].shape[2] | |
# Some generation methods already pass only the last input ID | |
if input_ids.shape[1] > past_length: | |
remove_prefix_length = past_length | |
else: | |
# Default to old behavior: keep only final ID | |
remove_prefix_length = input_ids.shape[1] - 1 | |
input_ids = input_ids[:, remove_prefix_length:] | |
return { | |
"decoder_input_ids": input_ids, | |
"past_key_values": past_key_values, | |
"encoder_outputs": encoder_outputs, | |
"attention_mask": attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"decoder_attention_mask": decoder_attention_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
"use_cache": use_cache, | |
} | |
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_decoder_input_ids_from_labels | |
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
return self._shift_right(labels) | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
) | |
return reordered_past | |
class UMT5EncoderModel(UMT5PreTrainedModel): | |
r""" | |
Examples: | |
```python | |
>>> from transformers import UMT5EncoderModel, AutoTokenizer | |
>>> model = UMT5EncoderModel.from_pretrained("google/umt5-small") | |
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small") | |
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." | |
>>> input_ids = tokenizer(article, return_tensors="pt").input_ids | |
>>> outputs = model(input_ids) | |
>>> hidden_state = outputs.last_hidden_state | |
```""" | |
model_type = "umt5" | |
# config_class = UMT5Config | |
_tied_weights_keys = ["encoder.embed_tokens.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = UMT5Stack(encoder_config, self.shared) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.get_input_embeddings | |
def get_input_embeddings(self): | |
return self.shared | |
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.set_input_embeddings | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel._tie_weights | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | |
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.get_encoder | |
def get_encoder(self): | |
return self.encoder | |
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel._prune_heads | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) | |
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.forward with T5->UMT5, google-t5/t5-small->google/umt5-small | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, UMT5EncoderModel | |
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small") | |
>>> model = UMT5EncoderModel.from_pretrained("google/umt5-small") | |
>>> input_ids = tokenizer( | |
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" | |
... ).input_ids # Batch size 1 | |
>>> outputs = model(input_ids=input_ids) | |
>>> last_hidden_states = outputs.last_hidden_state | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
return encoder_outputs | |
class UMT5ForSequenceClassification(UMT5PreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] | |
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | |
# Copied from transformers.models.t5.modeling_t5.T5ForSequenceClassification.__init__ with T5->UMT5 | |
def __init__(self, config: UMT5Config): | |
super().__init__(config) | |
self.transformer = UMT5Model(config) | |
self.classification_head = UMT5ClassificationHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
self.model_parallel = False | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
decoder_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None: | |
use_cache = False | |
if input_ids is None and inputs_embeds is not None: | |
raise NotImplementedError( | |
f"Passing input embeddings is currently not supported for {self.__class__.__name__}" | |
) | |
# Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates | |
# decoder_input_ids from input_ids if no decoder_input_ids are provided | |
if decoder_input_ids is None and decoder_inputs_embeds is None: | |
if input_ids is None: | |
raise ValueError( | |
"If no `decoder_input_ids` or `decoder_inputs_embeds` are " | |
"passed, `input_ids` cannot be `None`. Please pass either " | |
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." | |
) | |
decoder_input_ids = self._shift_right(input_ids) | |
outputs = self.transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
head_mask=head_mask, | |
decoder_head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
encoder_outputs=encoder_outputs, | |
inputs_embeds=inputs_embeds, | |
decoder_inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device) | |
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: | |
raise ValueError("All examples must have the same number of <eos> tokens.") | |
batch_size, _, hidden_size = sequence_output.shape | |
sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :] | |
logits = self.classification_head(sentence_representation) | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
if self.config.problem_type is None: | |
if self.config.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.config.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return Seq2SeqSequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
) | |
class UMT5ForTokenClassification(UMT5PreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] | |
_tied_weights_keys = ["transformer.encoder.embed_tokens.weight"] | |
# Copied from transformers.models.t5.modeling_t5.T5ForTokenClassification.__init__ with T5->UMT5 | |
def __init__(self, config: UMT5Config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = UMT5EncoderModel(config) | |
self.dropout = nn.Dropout(config.classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.t5.modeling_t5.T5ForTokenClassification.forward with T5->UMT5 | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
Returns: | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
hidden_states = self.dropout(hidden_states) | |
logits = self.classifier(hidden_states) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits, outputs[2:-1]) | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class UMT5ForQuestionAnswering(UMT5PreTrainedModel): | |
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.model_dim = config.d_model | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.is_decoder = False | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = UMT5Stack(encoder_config, self.shared) | |
decoder_config = copy.deepcopy(config) | |
decoder_config.is_decoder = True | |
decoder_config.is_encoder_decoder = False | |
decoder_config.num_layers = config.num_decoder_layers | |
self.decoder = UMT5Stack(decoder_config, self.shared) | |
self.num_labels = config.num_labels | |
self.qa_outputs = nn.Linear(config.d_model, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_input_embeddings | |
def get_input_embeddings(self): | |
return self.shared | |
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.set_input_embeddings | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
self.decoder.set_input_embeddings(new_embeddings) | |
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering._tie_weights | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | |
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) | |
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_encoder | |
def get_encoder(self): | |
return self.encoder | |
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_decoder | |
def get_decoder(self): | |
return self.decoder | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
decoder_head_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
start_positions: Optional[torch.LongTensor] = None, | |
end_positions: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence | |
are not taken into account for computing the loss. | |
Returns: | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
if start_positions is not None and end_positions is not None: | |
use_cache = False | |
# Copied from models.bart.modeling_bart.BartModel.forward | |
# different to other models, T5 automatically creates decoder_input_ids from | |
# input_ids if no decoder_input_ids are provided | |
if decoder_input_ids is None and decoder_inputs_embeds is None: | |
if input_ids is None: | |
raise ValueError( | |
"If no `decoder_input_ids` or `decoder_inputs_embeds` are " | |
"passed, `input_ids` cannot be `None`. Please pass either " | |
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." | |
) | |
decoder_input_ids = self._shift_right(input_ids) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# Encode if needed (training, first prediction pass) | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
hidden_states = encoder_outputs[0] | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
past_key_values=None, | |
encoder_hidden_states=hidden_states, | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = decoder_outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1).to(start_logits.device) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1).to(end_logits.device) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs | |
return ((total_loss,) + output) if total_loss is not None else output | |
return Seq2SeqQuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |