Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/unispeech
/configuration_unispeech.py
# coding=utf-8 | |
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""UniSpeech model configuration""" | |
import functools | |
import operator | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class UniSpeechConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`UniSpeechModel`]. It is used to instantiate an | |
UniSpeech model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the UniSpeech | |
[microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 32): | |
Vocabulary size of the UniSpeech model. Defines the number of different tokens that can be represented by | |
the `inputs_ids` passed when calling [`UniSpeechModel`]. Vocabulary size of the model. Defines the | |
different tokens that can be represented by the *inputs_ids* passed to the forward method of | |
[`UniSpeechModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
hidden_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
activation_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for activations inside the fully connected layer. | |
attention_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
feat_proj_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout probability for output of the feature encoder. | |
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout probability for the output of the feature encoder that's used by the quantizer. | |
final_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probability for the final projection layer of [`UniSpeechForCTC`]. | |
layerdrop (`float`, *optional*, defaults to 0.1): | |
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more | |
details. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-05): | |
The epsilon used by the layer normalization layers. | |
feat_extract_norm (`str`, *optional*, defaults to `"group"`): | |
The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group | |
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D | |
convolutional layers. | |
feat_extract_activation (`str, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the 1D convolutional layers of the feature | |
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. | |
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): | |
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the | |
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. | |
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): | |
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length | |
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. | |
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 2, 2)`): | |
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The | |
length of *conv_kernel* defines the number of convolutional layers and has to match the length of | |
*conv_dim*. | |
conv_bias (`bool`, *optional*, defaults to `False`): | |
Whether the 1D convolutional layers have a bias. | |
num_conv_pos_embeddings (`int`, *optional*, defaults to 128): | |
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional | |
embeddings layer. | |
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): | |
Number of groups of 1D convolutional positional embeddings layer. | |
do_stable_layer_norm (`bool`, *optional*, defaults to `False`): | |
Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is | |
True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is | |
False` corresponds to applying layer norm after the attention layer. | |
apply_spec_augment (`bool`, *optional*, defaults to `True`): | |
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see | |
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech | |
Recognition](https://arxiv.org/abs/1904.08779). | |
mask_time_prob (`float`, *optional*, defaults to 0.05): | |
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking | |
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If | |
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be | |
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the | |
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. | |
mask_time_length (`int`, *optional*, defaults to 10): | |
Length of vector span along the time axis. | |
mask_time_min_masks (`int`, *optional*, defaults to 2): | |
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, | |
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < | |
mask_time_min_masks'' | |
mask_feature_prob (`float`, *optional*, defaults to 0.0): | |
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The | |
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over | |
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector | |
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap | |
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is | |
True`. | |
mask_feature_length (`int`, *optional*, defaults to 10): | |
Length of vector span along the feature axis. | |
mask_feature_min_masks (`int`, *optional*, defaults to 0): | |
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time | |
step, irrespectively of `mask_feature_prob`. Only relevant if | |
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' | |
num_codevectors_per_group (`int`, *optional*, defaults to 320): | |
Number of entries in each quantization codebook (group). | |
num_codevector_groups (`int`, *optional*, defaults to 2): | |
Number of codevector groups for product codevector quantization. | |
contrastive_logits_temperature (`float`, *optional*, defaults to 0.1): | |
The temperature *kappa* in the contrastive loss. | |
num_negatives (`int`, *optional*, defaults to 100): | |
Number of negative samples for the contrastive loss. | |
codevector_dim (`int`, *optional*, defaults to 256): | |
Dimensionality of the quantized feature vectors. | |
proj_codevector_dim (`int`, *optional*, defaults to 256): | |
Dimensionality of the final projection of both the quantized and the transformer features. | |
diversity_loss_weight (`int`, *optional*, defaults to 0.1): | |
The weight of the codebook diversity loss component. | |
ctc_loss_reduction (`str`, *optional*, defaults to `"mean"`): | |
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an | |
instance of [`UniSpeechForCTC`]. | |
ctc_zero_infinity (`bool`, *optional*, defaults to `False`): | |
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly | |
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance | |
of [`UniSpeechForCTC`]. | |
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): | |
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an | |
instance of [`UniSpeechForSequenceClassification`]. | |
classifier_proj_size (`int`, *optional*, defaults to 256): | |
Dimensionality of the projection before token mean-pooling for classification. | |
num_ctc_classes (`int`, *optional*, defaults to 80): | |
Specifies the number of classes (phoneme tokens and blank token) for phoneme-level CTC loss. Only relevant | |
when using an instance of [`UniSpeechForPreTraining`]. | |
pad_token_id (`int`, *optional*, defaults to 0): | |
The id of the padding token. | |
bos_token_id (`int`, *optional*, defaults to 1): | |
The id of the "beginning-of-sequence" token. | |
eos_token_id (`int`, *optional*, defaults to 2): | |
The id of the "end-of-sequence" token. | |
replace_prob (`float`, *optional*, defaults to 0.5): | |
Propability that transformer feature is replaced by quantized feature for pretraining. | |
Example: | |
```python | |
>>> from transformers import UniSpeechConfig, UniSpeechModel | |
>>> # Initializing a UniSpeech facebook/unispeech-base-960h style configuration | |
>>> configuration = UniSpeechConfig() | |
>>> # Initializing a model (with random weights) from the facebook/unispeech-base-960h style configuration | |
>>> model = UniSpeechModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "unispeech" | |
def __init__( | |
self, | |
vocab_size=32, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout=0.1, | |
activation_dropout=0.1, | |
attention_dropout=0.1, | |
feat_proj_dropout=0.0, | |
feat_quantizer_dropout=0.0, | |
final_dropout=0.1, | |
layerdrop=0.1, | |
initializer_range=0.02, | |
layer_norm_eps=1e-5, | |
feat_extract_norm="group", | |
feat_extract_activation="gelu", | |
conv_dim=(512, 512, 512, 512, 512, 512, 512), | |
conv_stride=(5, 2, 2, 2, 2, 2, 2), | |
conv_kernel=(10, 3, 3, 3, 3, 2, 2), | |
conv_bias=False, | |
num_conv_pos_embeddings=128, | |
num_conv_pos_embedding_groups=16, | |
do_stable_layer_norm=False, | |
apply_spec_augment=True, | |
mask_time_prob=0.05, | |
mask_time_length=10, | |
mask_time_min_masks=2, | |
mask_feature_prob=0.0, | |
mask_feature_length=10, | |
mask_feature_min_masks=0, | |
num_codevectors_per_group=320, | |
num_codevector_groups=2, | |
contrastive_logits_temperature=0.1, | |
num_negatives=100, | |
codevector_dim=256, | |
proj_codevector_dim=256, | |
diversity_loss_weight=0.1, | |
ctc_loss_reduction="mean", | |
ctc_zero_infinity=False, | |
use_weighted_layer_sum=False, | |
classifier_proj_size=256, | |
num_ctc_classes=80, | |
pad_token_id=0, | |
bos_token_id=1, | |
eos_token_id=2, | |
replace_prob=0.5, | |
**kwargs, | |
): | |
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) | |
self.hidden_size = hidden_size | |
self.feat_extract_norm = feat_extract_norm | |
self.feat_extract_activation = feat_extract_activation | |
self.conv_dim = list(conv_dim) | |
self.conv_stride = list(conv_stride) | |
self.conv_kernel = list(conv_kernel) | |
self.conv_bias = conv_bias | |
self.num_conv_pos_embeddings = num_conv_pos_embeddings | |
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups | |
self.num_feat_extract_layers = len(self.conv_dim) | |
self.num_hidden_layers = num_hidden_layers | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.num_attention_heads = num_attention_heads | |
self.hidden_dropout = hidden_dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.feat_proj_dropout = feat_proj_dropout | |
self.final_dropout = final_dropout | |
self.layerdrop = layerdrop | |
self.layer_norm_eps = layer_norm_eps | |
self.initializer_range = initializer_range | |
self.num_ctc_classes = num_ctc_classes | |
self.vocab_size = vocab_size | |
self.do_stable_layer_norm = do_stable_layer_norm | |
self.use_weighted_layer_sum = use_weighted_layer_sum | |
self.classifier_proj_size = classifier_proj_size | |
if ( | |
(len(self.conv_stride) != self.num_feat_extract_layers) | |
or (len(self.conv_kernel) != self.num_feat_extract_layers) | |
or (len(self.conv_dim) != self.num_feat_extract_layers) | |
): | |
raise ValueError( | |
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" | |
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" | |
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," | |
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." | |
) | |
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 | |
self.apply_spec_augment = apply_spec_augment | |
self.mask_time_prob = mask_time_prob | |
self.mask_time_length = mask_time_length | |
self.mask_time_min_masks = mask_time_min_masks | |
self.mask_feature_prob = mask_feature_prob | |
self.mask_feature_length = mask_feature_length | |
self.mask_feature_min_masks = mask_feature_min_masks | |
# parameters for pretraining with codevector quantized representations | |
self.num_codevectors_per_group = num_codevectors_per_group | |
self.num_codevector_groups = num_codevector_groups | |
self.contrastive_logits_temperature = contrastive_logits_temperature | |
self.feat_quantizer_dropout = feat_quantizer_dropout | |
self.num_negatives = num_negatives | |
self.codevector_dim = codevector_dim | |
self.proj_codevector_dim = proj_codevector_dim | |
self.diversity_loss_weight = diversity_loss_weight | |
# ctc loss | |
self.ctc_loss_reduction = ctc_loss_reduction | |
self.ctc_zero_infinity = ctc_zero_infinity | |
# pretraining loss | |
self.replace_prob = replace_prob | |
def inputs_to_logits_ratio(self): | |
return functools.reduce(operator.mul, self.conv_stride, 1) | |