Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/unispeech
/modeling_unispeech.py
# coding=utf-8 | |
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch UniSpeech model.""" | |
import math | |
import warnings | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from ...activations import ACT2FN | |
from ...integrations.deepspeed import is_deepspeed_zero3_enabled | |
from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, Wav2Vec2BaseModelOutput | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_unispeech import UniSpeechConfig | |
if is_flash_attn_2_available(): | |
from ...modeling_flash_attention_utils import _flash_attention_forward | |
logger = logging.get_logger(__name__) | |
_HIDDEN_STATES_START_POSITION = 2 | |
# General docstring | |
_CONFIG_FOR_DOC = "UniSpeechConfig" | |
# Base docstring | |
_CHECKPOINT_FOR_DOC = "patrickvonplaten/unispeech-large-1500h-cv-timit" | |
_EXPECTED_OUTPUT_SHAPE = [1, 292, 1024] | |
# CTC docstring | |
_CTC_EXPECTED_OUTPUT = "'mister quilter is the apposl of the midle classes and weare glad to welcom his gosepl'" | |
_CTC_EXPECTED_LOSS = 17.17 | |
class UniSpeechForPreTrainingOutput(ModelOutput): | |
""" | |
Output type of [`UniSpeechForPreTrainingOutput`], with potential hidden states and attentions. | |
Args: | |
loss (*optional*, returned when model is in train mode, `torch.FloatTensor` of shape `(1,)`): | |
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official | |
paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. | |
projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): | |
Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked | |
projected quantized states. | |
projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): | |
Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive | |
target vectors for contrastive loss. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
projected_states: torch.FloatTensor = None | |
projected_quantized_states: torch.FloatTensor = None | |
codevector_perplexity: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices | |
def _compute_mask_indices( | |
shape: Tuple[int, int], | |
mask_prob: float, | |
mask_length: int, | |
attention_mask: Optional[torch.LongTensor] = None, | |
min_masks: int = 0, | |
) -> np.ndarray: | |
""" | |
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for | |
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on | |
CPU as part of the preprocessing during training. | |
Args: | |
shape: The shape for which to compute masks. This should be of a tuple of size 2 where | |
the first element is the batch size and the second element is the length of the axis to span. | |
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of | |
independently generated mask spans of length `mask_length` is computed by | |
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the | |
actual percentage will be smaller. | |
mask_length: size of the mask | |
min_masks: minimum number of masked spans | |
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of | |
each batch dimension. | |
""" | |
batch_size, sequence_length = shape | |
if mask_length < 1: | |
raise ValueError("`mask_length` has to be bigger than 0.") | |
if mask_length > sequence_length: | |
raise ValueError( | |
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" | |
f" and `sequence_length`: {sequence_length}`" | |
) | |
# epsilon is used for probabilistic rounding | |
epsilon = np.random.rand(1).item() | |
def compute_num_masked_span(input_length): | |
"""Given input length, compute how many spans should be masked""" | |
num_masked_span = int(mask_prob * input_length / mask_length + epsilon) | |
num_masked_span = max(num_masked_span, min_masks) | |
# make sure num masked span <= sequence_length | |
if num_masked_span * mask_length > sequence_length: | |
num_masked_span = sequence_length // mask_length | |
# make sure num_masked span is also <= input_length - (mask_length - 1) | |
if input_length - (mask_length - 1) < num_masked_span: | |
num_masked_span = max(input_length - (mask_length - 1), 0) | |
return num_masked_span | |
# compute number of masked spans in batch | |
input_lengths = ( | |
attention_mask.sum(-1).detach().tolist() | |
if attention_mask is not None | |
else [sequence_length for _ in range(batch_size)] | |
) | |
# SpecAugment mask to fill | |
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) | |
spec_aug_mask_idxs = [] | |
max_num_masked_span = compute_num_masked_span(sequence_length) | |
if max_num_masked_span == 0: | |
return spec_aug_mask | |
for input_length in input_lengths: | |
# compute num of masked spans for this input | |
num_masked_span = compute_num_masked_span(input_length) | |
# get random indices to mask | |
spec_aug_mask_idx = np.random.choice( | |
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False | |
) | |
# pick first sampled index that will serve as a dummy index to pad vector | |
# to ensure same dimension for all batches due to probabilistic rounding | |
# Picking first sample just pads those vectors twice. | |
if len(spec_aug_mask_idx) == 0: | |
# this case can only happen if `input_length` is strictly smaller then | |
# `sequence_length` in which case the last token has to be a padding | |
# token which we can use as a dummy mask id | |
dummy_mask_idx = sequence_length - 1 | |
else: | |
dummy_mask_idx = spec_aug_mask_idx[0] | |
spec_aug_mask_idx = np.concatenate( | |
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] | |
) | |
spec_aug_mask_idxs.append(spec_aug_mask_idx) | |
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) | |
# expand masked indices to masked spans | |
spec_aug_mask_idxs = np.broadcast_to( | |
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) | |
) | |
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) | |
# add offset to the starting indexes so that indexes now create a span | |
offsets = np.arange(mask_length)[None, None, :] | |
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( | |
batch_size, max_num_masked_span * mask_length | |
) | |
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets | |
# ensure that we cannot have indices larger than sequence_length | |
if spec_aug_mask_idxs.max() > sequence_length - 1: | |
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 | |
# scatter indices to mask | |
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) | |
return spec_aug_mask | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->UniSpeech | |
class UniSpeechNoLayerNormConvLayer(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 | |
self.out_conv_dim = config.conv_dim[layer_id] | |
self.conv = nn.Conv1d( | |
self.in_conv_dim, | |
self.out_conv_dim, | |
kernel_size=config.conv_kernel[layer_id], | |
stride=config.conv_stride[layer_id], | |
bias=config.conv_bias, | |
) | |
self.activation = ACT2FN[config.feat_extract_activation] | |
def forward(self, hidden_states): | |
hidden_states = self.conv(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->UniSpeech | |
class UniSpeechLayerNormConvLayer(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 | |
self.out_conv_dim = config.conv_dim[layer_id] | |
self.conv = nn.Conv1d( | |
self.in_conv_dim, | |
self.out_conv_dim, | |
kernel_size=config.conv_kernel[layer_id], | |
stride=config.conv_stride[layer_id], | |
bias=config.conv_bias, | |
) | |
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) | |
self.activation = ACT2FN[config.feat_extract_activation] | |
def forward(self, hidden_states): | |
hidden_states = self.conv(hidden_states) | |
hidden_states = hidden_states.transpose(-2, -1) | |
hidden_states = self.layer_norm(hidden_states) | |
hidden_states = hidden_states.transpose(-2, -1) | |
hidden_states = self.activation(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->UniSpeech | |
class UniSpeechGroupNormConvLayer(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 | |
self.out_conv_dim = config.conv_dim[layer_id] | |
self.conv = nn.Conv1d( | |
self.in_conv_dim, | |
self.out_conv_dim, | |
kernel_size=config.conv_kernel[layer_id], | |
stride=config.conv_stride[layer_id], | |
bias=config.conv_bias, | |
) | |
self.activation = ACT2FN[config.feat_extract_activation] | |
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) | |
def forward(self, hidden_states): | |
hidden_states = self.conv(hidden_states) | |
hidden_states = self.layer_norm(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->UniSpeech | |
class UniSpeechPositionalConvEmbedding(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.conv = nn.Conv1d( | |
config.hidden_size, | |
config.hidden_size, | |
kernel_size=config.num_conv_pos_embeddings, | |
padding=config.num_conv_pos_embeddings // 2, | |
groups=config.num_conv_pos_embedding_groups, | |
) | |
weight_norm = nn.utils.weight_norm | |
if hasattr(nn.utils.parametrizations, "weight_norm"): | |
weight_norm = nn.utils.parametrizations.weight_norm | |
if is_deepspeed_zero3_enabled(): | |
import deepspeed | |
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): | |
self.conv = weight_norm(self.conv, name="weight", dim=2) | |
if hasattr(self.conv, "parametrizations"): | |
weight_g = self.conv.parametrizations.weight.original0 | |
weight_v = self.conv.parametrizations.weight.original1 | |
else: | |
weight_g = self.conv.weight_g | |
weight_v = self.conv.weight_v | |
deepspeed.zero.register_external_parameter(self, weight_v) | |
deepspeed.zero.register_external_parameter(self, weight_g) | |
else: | |
self.conv = weight_norm(self.conv, name="weight", dim=2) | |
self.padding = UniSpeechSamePadLayer(config.num_conv_pos_embeddings) | |
self.activation = ACT2FN[config.feat_extract_activation] | |
def forward(self, hidden_states): | |
hidden_states = hidden_states.transpose(1, 2) | |
hidden_states = self.conv(hidden_states) | |
hidden_states = self.padding(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
hidden_states = hidden_states.transpose(1, 2) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->UniSpeech | |
class UniSpeechSamePadLayer(nn.Module): | |
def __init__(self, num_conv_pos_embeddings): | |
super().__init__() | |
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 | |
def forward(self, hidden_states): | |
if self.num_pad_remove > 0: | |
hidden_states = hidden_states[:, :, : -self.num_pad_remove] | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->UniSpeech | |
class UniSpeechFeatureEncoder(nn.Module): | |
"""Construct the features from raw audio waveform""" | |
def __init__(self, config): | |
super().__init__() | |
if config.feat_extract_norm == "group": | |
conv_layers = [UniSpeechGroupNormConvLayer(config, layer_id=0)] + [ | |
UniSpeechNoLayerNormConvLayer(config, layer_id=i + 1) | |
for i in range(config.num_feat_extract_layers - 1) | |
] | |
elif config.feat_extract_norm == "layer": | |
conv_layers = [ | |
UniSpeechLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) | |
] | |
else: | |
raise ValueError( | |
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" | |
) | |
self.conv_layers = nn.ModuleList(conv_layers) | |
self.gradient_checkpointing = False | |
self._requires_grad = True | |
def _freeze_parameters(self): | |
for param in self.parameters(): | |
param.requires_grad = False | |
self._requires_grad = False | |
def forward(self, input_values): | |
hidden_states = input_values[:, None] | |
# make sure hidden_states require grad for gradient_checkpointing | |
if self._requires_grad and self.training: | |
hidden_states.requires_grad = True | |
for conv_layer in self.conv_layers: | |
if self._requires_grad and self.gradient_checkpointing and self.training: | |
hidden_states = self._gradient_checkpointing_func( | |
conv_layer.__call__, | |
hidden_states, | |
) | |
else: | |
hidden_states = conv_layer(hidden_states) | |
return hidden_states | |
class UniSpeechFeatureExtractor(UniSpeechFeatureEncoder): | |
def __init__(self, config): | |
super().__init__(config) | |
warnings.warn( | |
f"The class `{self.__class__.__name__}` has been depreciated " | |
"and will be removed in Transformers v5. " | |
f"Use `{self.__class__.__bases__[0].__name__}` instead.", | |
FutureWarning, | |
) | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->UniSpeech | |
class UniSpeechFeatureProjection(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) | |
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) | |
self.dropout = nn.Dropout(config.feat_proj_dropout) | |
def forward(self, hidden_states): | |
# non-projected hidden states are needed for quantization | |
norm_hidden_states = self.layer_norm(hidden_states) | |
hidden_states = self.projection(norm_hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states, norm_hidden_states | |
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->UniSpeech | |
class UniSpeechAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
is_decoder: bool = False, | |
bias: bool = True, | |
is_causal: bool = False, | |
config: Optional[UniSpeechConfig] = None, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
self.config = config | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.is_decoder = is_decoder | |
self.is_causal = is_causal | |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# get key, value proj | |
# `past_key_value[0].shape[2] == key_value_states.shape[1]` | |
# is checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
if ( | |
is_cross_attention | |
and past_key_value is not None | |
and past_key_value[0].shape[2] == key_value_states.shape[1] | |
): | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.reshape(*proj_shape) | |
value_states = value_states.reshape(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if output_attentions: | |
# this operation is a bit awkward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to be reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped, past_key_value | |
# Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->UniSpeech | |
class UniSpeechFlashAttention2(UniSpeechAttention): | |
""" | |
UniSpeech flash attention module. This module inherits from `UniSpeechAttention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
# UniSpeechFlashAttention2 attention does not support output_attentions | |
if output_attentions: | |
raise ValueError("UniSpeechFlashAttention2 attention does not support output_attentions") | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, q_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz) | |
# get key, value proj | |
# `past_key_value[0].shape[2] == key_value_states.shape[1]` | |
# is checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
if ( | |
is_cross_attention | |
and past_key_value is not None | |
and past_key_value[0].shape[2] == key_value_states.shape[1] | |
): | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0].transpose(1, 2) | |
value_states = past_key_value[1].transpose(1, 2) | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1) | |
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1) | |
else: | |
# self_attention | |
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. (LlamaRMSNorm handles it correctly) | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
attn_output = _flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
q_len, | |
dropout=self.dropout, | |
is_causal=self.is_causal, | |
use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
) | |
attn_output = attn_output.reshape(bsz, q_len, -1) | |
attn_output = self.out_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class UniSpeechSdpaAttention(UniSpeechAttention): | |
# Copied from transformers.models.bart.modeling_bart.BartSdpaAttention.forward with Bart->UniSpeech | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
if output_attentions or layer_head_mask is not None: | |
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
"UniSpeechModel is using UniSpeechSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" | |
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states, | |
key_value_states=key_value_states, | |
past_key_value=past_key_value, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) | |
# get key, value proj | |
# `past_key_value[0].shape[2] == key_value_states.shape[1]` | |
# is checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
if ( | |
is_cross_attention | |
and past_key_value is not None | |
and past_key_value[0].shape[2] == key_value_states.shape[1] | |
): | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
query_states = self._shape(query_states, tgt_len, bsz) | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. | |
is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False | |
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, | |
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=attention_mask, | |
dropout_p=self.dropout if self.training else 0.0, | |
is_causal=is_causal, | |
) | |
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, None, past_key_value | |
UNISPEECH_ATTENTION_CLASSES = { | |
"eager": UniSpeechAttention, | |
"sdpa": UniSpeechSdpaAttention, | |
"flash_attention_2": UniSpeechFlashAttention2, | |
} | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->UniSpeech | |
class UniSpeechFeedForward(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.intermediate_dropout = nn.Dropout(config.activation_dropout) | |
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.output_dropout = nn.Dropout(config.hidden_dropout) | |
def forward(self, hidden_states): | |
hidden_states = self.intermediate_dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
hidden_states = self.intermediate_dropout(hidden_states) | |
hidden_states = self.output_dense(hidden_states) | |
hidden_states = self.output_dropout(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->UniSpeech, WAV2VEC2->UNISPEECH | |
class UniSpeechEncoderLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.attention = UNISPEECH_ATTENTION_CLASSES[config._attn_implementation]( | |
embed_dim=config.hidden_size, | |
num_heads=config.num_attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=False, | |
) | |
self.dropout = nn.Dropout(config.hidden_dropout) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.feed_forward = UniSpeechFeedForward(config) | |
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states, attention_mask=None, output_attentions=False): | |
attn_residual = hidden_states | |
hidden_states, attn_weights, _ = self.attention( | |
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions | |
) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = attn_residual + hidden_states | |
hidden_states = self.layer_norm(hidden_states) | |
hidden_states = hidden_states + self.feed_forward(hidden_states) | |
hidden_states = self.final_layer_norm(hidden_states) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AttnAdapterLayer with Wav2Vec2->UniSpeech | |
class UniSpeechAttnAdapterLayer(nn.Module): | |
def __init__(self, config): | |
""" | |
Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed | |
up training throughput. | |
""" | |
super().__init__() | |
self.input_dim = config.adapter_attn_dim | |
self.hidden_dim = config.hidden_size | |
self.norm = nn.LayerNorm(self.hidden_dim) | |
self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim) | |
self.act_fn = nn.ReLU() | |
self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim) | |
def forward(self, hidden_states: torch.FloatTensor): | |
hidden_states = self.norm(hidden_states) | |
hidden_states = self.linear_1(hidden_states) | |
hidden_states = self.act_fn(hidden_states) | |
hidden_states = self.linear_2(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->UniSpeech, WAV2VEC2->UNISPEECH | |
class UniSpeechEncoderLayerStableLayerNorm(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.attention = UNISPEECH_ATTENTION_CLASSES[config._attn_implementation]( | |
embed_dim=config.hidden_size, | |
num_heads=config.num_attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=False, | |
) | |
self.dropout = nn.Dropout(config.hidden_dropout) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.feed_forward = UniSpeechFeedForward(config) | |
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
if getattr(config, "adapter_attn_dim", None) is not None: | |
self.adapter_layer = UniSpeechAttnAdapterLayer(config) | |
else: | |
self.adapter_layer = None | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
): | |
attn_residual = hidden_states | |
hidden_states = self.layer_norm(hidden_states) | |
hidden_states, attn_weights, _ = self.attention( | |
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions | |
) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = attn_residual + hidden_states | |
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) | |
if self.adapter_layer is not None: | |
hidden_states = hidden_states + self.adapter_layer(hidden_states) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->UniSpeech | |
class UniSpeechEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout) | |
self.layers = nn.ModuleList([UniSpeechEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
def forward( | |
self, | |
hidden_states: torch.tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
if attention_mask is not None: | |
# make sure padded tokens output 0 | |
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) | |
hidden_states[~expand_attention_mask] = 0 | |
if self._use_flash_attention_2: | |
# 2d mask is passed through the layers | |
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | |
else: | |
# extend attention_mask | |
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) | |
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min | |
attention_mask = attention_mask.expand( | |
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] | |
) | |
position_embeddings = self.pos_conv_embed(hidden_states) | |
hidden_states = hidden_states + position_embeddings | |
hidden_states = self.layer_norm(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() | |
for layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = torch.rand([]) | |
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False | |
if not skip_the_layer or deepspeed_zero3_is_enabled: | |
# under deepspeed zero3 all gpus must run in sync | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer.__call__, | |
hidden_states, | |
attention_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer( | |
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions | |
) | |
hidden_states = layer_outputs[0] | |
if skip_the_layer: | |
layer_outputs = (None, None) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->UniSpeech | |
class UniSpeechEncoderStableLayerNorm(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout) | |
self.layers = nn.ModuleList( | |
[UniSpeechEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)] | |
) | |
self.gradient_checkpointing = False | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
if attention_mask is not None: | |
# make sure padded tokens are not attended to | |
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) | |
hidden_states[~expand_attention_mask] = 0 | |
if self._use_flash_attention_2: | |
# 2d mask is passed through the layers | |
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | |
else: | |
# extend attention_mask | |
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) | |
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min | |
attention_mask = attention_mask.expand( | |
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] | |
) | |
position_embeddings = self.pos_conv_embed(hidden_states) | |
hidden_states = hidden_states + position_embeddings | |
hidden_states = self.dropout(hidden_states) | |
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() | |
for layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = torch.rand([]) | |
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False | |
if not skip_the_layer or deepspeed_zero3_is_enabled: | |
# under deepspeed zero3 all gpus must run in sync | |
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer.__call__, | |
hidden_states, | |
attention_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer( | |
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions | |
) | |
hidden_states = layer_outputs[0] | |
if skip_the_layer: | |
layer_outputs = (None, None) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
hidden_states = self.layer_norm(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class UniSpeechGumbelVectorQuantizer(nn.Module): | |
""" | |
Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH | |
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.num_groups = config.num_codevector_groups | |
self.num_vars = config.num_codevectors_per_group | |
if config.codevector_dim % self.num_groups != 0: | |
raise ValueError( | |
f"`config.codevector_dim {config.codevector_dim} must be divisible by `config.num_codevector_groups`" | |
f" {self.num_groups} for concatenation" | |
) | |
# storage for codebook variables (codewords) | |
self.codevectors = nn.Parameter( | |
torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) | |
) | |
self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) | |
# can be decayed for training | |
self.temperature = 2 | |
def _compute_perplexity(probs): | |
marginal_probs = probs.mean(dim=0) | |
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() | |
return perplexity | |
def forward(self, hidden_states): | |
batch_size, sequence_length, hidden_size = hidden_states.shape | |
# project to codevector dim | |
hidden_states = self.weight_proj(hidden_states) | |
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) | |
if self.training: | |
# sample code vector probs via gumbel in differentiateable way | |
codevector_probs = nn.functional.gumbel_softmax( | |
hidden_states.float(), tau=self.temperature, hard=True | |
).type_as(hidden_states) | |
# compute perplexity | |
codevector_soft_dist = torch.softmax( | |
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 | |
) | |
perplexity = self._compute_perplexity(codevector_soft_dist) | |
else: | |
# take argmax in non-differentiable way | |
# comptute hard codevector distribution (one hot) | |
codevector_idx = hidden_states.argmax(dim=-1) | |
codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_( | |
-1, codevector_idx.view(-1, 1), 1.0 | |
) | |
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) | |
perplexity = self._compute_perplexity(codevector_probs) | |
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) | |
# use probs to retrieve codevectors | |
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors | |
codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) | |
codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) | |
return codevectors, perplexity | |
class UniSpeechPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = UniSpeechConfig | |
base_model_prefix = "unispeech" | |
main_input_name = "input_values" | |
supports_gradient_checkpointing = True | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
# gumbel softmax requires special init | |
if isinstance(module, UniSpeechGumbelVectorQuantizer): | |
module.weight_proj.weight.data.normal_(mean=0.0, std=1) | |
module.weight_proj.bias.data.zero_() | |
nn.init.uniform_(module.codevectors) | |
elif isinstance(module, UniSpeechPositionalConvEmbedding): | |
nn.init.normal_( | |
module.conv.weight, | |
mean=0, | |
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), | |
) | |
nn.init.constant_(module.conv.bias, 0) | |
elif isinstance(module, UniSpeechFeatureProjection): | |
k = math.sqrt(1 / module.projection.in_features) | |
nn.init.uniform_(module.projection.weight, a=-k, b=k) | |
nn.init.uniform_(module.projection.bias, a=-k, b=k) | |
elif isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, nn.Conv1d): | |
nn.init.kaiming_normal_(module.weight) | |
if module.bias is not None: | |
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) | |
nn.init.uniform_(module.bias, a=-k, b=k) | |
def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): | |
""" | |
Computes the output length of the convolutional layers | |
""" | |
def _conv_out_length(input_length, kernel_size, stride): | |
# 1D convolutional layer output length formula taken | |
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html | |
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 | |
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): | |
input_lengths = _conv_out_length(input_lengths, kernel_size, stride) | |
return input_lengths | |
def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): | |
# Effectively attention_mask.sum(-1), but not inplace to be able to run | |
# on inference mode. | |
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] | |
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long) | |
batch_size = attention_mask.shape[0] | |
attention_mask = torch.zeros( | |
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device | |
) | |
# these two operations makes sure that all values before the output lengths idxs are attended to | |
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 | |
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() | |
return attention_mask | |
UNISPEECH_START_DOCSTRING = r""" | |
UniSpeech was proposed in [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled | |
Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, | |
Michael Zeng, Xuedong Huang. | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving etc.). | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`UniSpeechConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
UNISPEECH_INPUTS_DOCSTRING = r""" | |
Args: | |
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): | |
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file | |
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install | |
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and | |
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. | |
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, | |
1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
<Tip warning={true}> | |
`attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == | |
True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should | |
**not** be passed to avoid degraded performance when doing batched inference. For such models | |
`input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these | |
models also yield slightly different results depending on whether `input_values` is padded or not. | |
</Tip> | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class UniSpeechModel(UniSpeechPreTrainedModel): | |
def __init__(self, config: UniSpeechConfig): | |
super().__init__(config) | |
self.config = config | |
self.feature_extractor = UniSpeechFeatureEncoder(config) | |
self.feature_projection = UniSpeechFeatureProjection(config) | |
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: | |
self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_()) | |
if config.do_stable_layer_norm: | |
self.encoder = UniSpeechEncoderStableLayerNorm(config) | |
else: | |
self.encoder = UniSpeechEncoder(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states | |
def _mask_hidden_states( | |
self, | |
hidden_states: torch.FloatTensor, | |
mask_time_indices: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
): | |
""" | |
Masks extracted features along time axis and/or along feature axis according to | |
[SpecAugment](https://arxiv.org/abs/1904.08779). | |
""" | |
# `config.apply_spec_augment` can set masking to False | |
if not getattr(self.config, "apply_spec_augment", True): | |
return hidden_states | |
# generate indices & apply SpecAugment along time axis | |
batch_size, sequence_length, hidden_size = hidden_states.size() | |
if mask_time_indices is not None: | |
# apply SpecAugment along time axis with given mask_time_indices | |
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) | |
elif self.config.mask_time_prob > 0 and self.training: | |
mask_time_indices = _compute_mask_indices( | |
(batch_size, sequence_length), | |
mask_prob=self.config.mask_time_prob, | |
mask_length=self.config.mask_time_length, | |
attention_mask=attention_mask, | |
min_masks=self.config.mask_time_min_masks, | |
) | |
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) | |
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) | |
if self.config.mask_feature_prob > 0 and self.training: | |
# generate indices & apply SpecAugment along feature axis | |
mask_feature_indices = _compute_mask_indices( | |
(batch_size, hidden_size), | |
mask_prob=self.config.mask_feature_prob, | |
mask_length=self.config.mask_feature_length, | |
min_masks=self.config.mask_feature_min_masks, | |
) | |
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) | |
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) | |
hidden_states[mask_feature_indices] = 0 | |
return hidden_states | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
mask_time_indices: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Wav2Vec2BaseModelOutput]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
extract_features = self.feature_extractor(input_values) | |
extract_features = extract_features.transpose(1, 2) | |
if attention_mask is not None: | |
# compute reduced attention_mask corresponding to feature vectors | |
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) | |
hidden_states, extract_features = self.feature_projection(extract_features) | |
hidden_states = self._mask_hidden_states( | |
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask | |
) | |
encoder_outputs = self.encoder( | |
hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = encoder_outputs[0] | |
if not return_dict: | |
return (hidden_states, extract_features) + encoder_outputs[1:] | |
return Wav2Vec2BaseModelOutput( | |
last_hidden_state=hidden_states, | |
extract_features=extract_features, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class UniSpeechForPreTraining(UniSpeechPreTrainedModel): | |
def __init__(self, config: UniSpeechConfig): | |
super().__init__(config) | |
self.unispeech = UniSpeechModel(config) | |
self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) | |
self.quantizer = UniSpeechGumbelVectorQuantizer(config) | |
self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) | |
self.project_hid = nn.Linear(config.proj_codevector_dim, config.hidden_size) | |
self.ctc_proj = nn.Linear(config.hidden_size, config.num_ctc_classes) | |
self.dropout = nn.Dropout(config.final_dropout) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def set_gumbel_temperature(self, temperature: int): | |
""" | |
Set the Gumbel softmax temperature to a given value. Only necessary for training | |
""" | |
self.quantizer.temperature = temperature | |
def freeze_feature_extractor(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameters will | |
not be updated during training. | |
""" | |
warnings.warn( | |
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " | |
"Please use the equivalent `freeze_feature_encoder` method instead.", | |
FutureWarning, | |
) | |
self.freeze_feature_encoder() | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.unispeech.feature_extractor._freeze_parameters() | |
def compute_contrastive_logits( | |
target_features: torch.FloatTensor, | |
negative_features: torch.FloatTensor, | |
predicted_features: torch.FloatTensor, | |
temperature: int = 1, | |
): | |
""" | |
Compute logits for contrastive loss based using cosine similarity as the distance measure between | |
`[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. | |
""" | |
target_features = torch.cat([target_features, negative_features], dim=0) | |
logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1) | |
logits = logits.type_as(target_features) | |
# apply temperature | |
logits = logits / temperature | |
return logits | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, UniSpeechForPreTrainingOutput]: | |
r""" | |
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict | |
masked extracted features in *config.proj_codevector_dim* space. | |
sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): | |
Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. | |
Required input for pre-training. | |
Returns: | |
Example: | |
```python | |
>>> import torch | |
>>> from transformers import AutoFeatureExtractor, UniSpeechForPreTraining | |
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/unispeech-large-1500h-cv") | |
>>> model = UniSpeechForPreTraining.from_pretrained("microsoft/unispeech-large-1500h-cv") | |
>>> # TODO: Add full pretraining example | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.unispeech( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
transformer_features = outputs[0] | |
# quantize all (unmasked) extracted features and project to final vq dim | |
extract_features = self.dropout_features(outputs[1]) | |
quantized_features, codevector_perplexity = self.quantizer(extract_features) | |
# project quantized features twice | |
quantized_features = self.project_q(quantized_features) | |
quantized_features = self.project_hid(quantized_features) | |
prob_replace_matrix = torch.empty(transformer_features.size(0), transformer_features.size(1)).fill_( | |
self.config.replace_prob | |
) | |
prob_replace_matrix = prob_replace_matrix.transpose(0, 1) | |
sampled_replace_matrix = torch.bernoulli(prob_replace_matrix).bool().to(transformer_features.device) | |
sampled_replace_matrix = sampled_replace_matrix.transpose(0, 1) | |
sampled_replace_matrix = sampled_replace_matrix.unsqueeze(-1) | |
logits = transformer_features.masked_fill(sampled_replace_matrix, 0.0) + ( | |
quantized_features.masked_fill(~sampled_replace_matrix, 0.0) | |
) | |
# project to ctc units | |
logits = self.dropout(logits) | |
logits = self.ctc_proj(logits) | |
# TODO(PVP) - add negative sampling & loss computation | |
loss = None | |
if not return_dict: | |
if loss is not None: | |
return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] | |
return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] | |
return UniSpeechForPreTrainingOutput( | |
loss=loss, | |
projected_states=transformer_features, | |
projected_quantized_states=quantized_features, | |
codevector_perplexity=codevector_perplexity, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->UniSpeech, wav2vec2->unispeech, WAV_2_VEC_2->UNISPEECH | |
class UniSpeechForCTC(UniSpeechPreTrainedModel): | |
def __init__(self, config, target_lang: Optional[str] = None): | |
super().__init__(config) | |
self.unispeech = UniSpeechModel(config) | |
self.dropout = nn.Dropout(config.final_dropout) | |
self.target_lang = target_lang | |
if config.vocab_size is None: | |
raise ValueError( | |
f"You are trying to instantiate {self.__class__} with a configuration that " | |
"does not define the vocabulary size of the language model head. Please " | |
"instantiate the model as follows: `UniSpeechForCTC.from_pretrained(..., vocab_size=vocab_size)`. " | |
"or define `vocab_size` of your model's configuration." | |
) | |
output_hidden_size = ( | |
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size | |
) | |
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def tie_weights(self): | |
""" | |
This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when | |
passing `target_lang=...` to `from_pretrained(...)`. | |
This method is **not** supposed to be called by the user and is prone to be changed in the future. | |
""" | |
# Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to | |
# correctly load adapter layers for UniSpeech so that we do not have to introduce a new API to | |
# [`PreTrainedModel`]. While slightly hacky, UniSpeech never has to tie input and output embeddings, so that it is | |
# ok to repurpose this function here. | |
target_lang = self.target_lang | |
if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: | |
raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") | |
elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: | |
logger.info("By default `target_lang` is set to 'eng'.") | |
elif target_lang is not None: | |
self.load_adapter(target_lang, force_load=True) | |
def freeze_feature_extractor(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
warnings.warn( | |
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " | |
"Please use the equivalent `freeze_feature_encoder` method instead.", | |
FutureWarning, | |
) | |
self.freeze_feature_encoder() | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.unispeech.feature_extractor._freeze_parameters() | |
def freeze_base_model(self): | |
""" | |
Calling this function will disable the gradient computation for the base model so that its parameters will not | |
be updated during training. Only the classification head will be updated. | |
""" | |
for param in self.unispeech.parameters(): | |
param.requires_grad = False | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.Tensor] = None, | |
) -> Union[Tuple, CausalLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): | |
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to | |
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. | |
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., | |
config.vocab_size - 1]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None and labels.max() >= self.config.vocab_size: | |
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") | |
outputs = self.unispeech( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
hidden_states = self.dropout(hidden_states) | |
logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
# retrieve loss input_lengths from attention_mask | |
attention_mask = ( | |
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) | |
) | |
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) | |
# assuming that padded tokens are filled with -100 | |
# when not being attended to | |
labels_mask = labels >= 0 | |
target_lengths = labels_mask.sum(-1) | |
flattened_targets = labels.masked_select(labels_mask) | |
# ctc_loss doesn't support fp16 | |
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) | |
with torch.backends.cudnn.flags(enabled=False): | |
loss = nn.functional.ctc_loss( | |
log_probs, | |
flattened_targets, | |
input_lengths, | |
target_lengths, | |
blank=self.config.pad_token_id, | |
reduction=self.config.ctc_loss_reduction, | |
zero_infinity=self.config.ctc_zero_infinity, | |
) | |
if not return_dict: | |
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] | |
return ((loss,) + output) if loss is not None else output | |
return CausalLMOutput( | |
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions | |
) | |
class UniSpeechForSequenceClassification(UniSpeechPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
if hasattr(config, "add_adapter") and config.add_adapter: | |
raise ValueError( | |
"Sequence classification does not support the use of UniSpeech adapters (config.add_adapter=True)" | |
) | |
self.unispeech = UniSpeechModel(config) | |
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings | |
if config.use_weighted_layer_sum: | |
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) | |
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) | |
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor | |
def freeze_feature_extractor(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameters will | |
not be updated during training. | |
""" | |
warnings.warn( | |
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " | |
"Please use the equivalent `freeze_feature_encoder` method instead.", | |
FutureWarning, | |
) | |
self.freeze_feature_encoder() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->unispeech | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.unispeech.feature_extractor._freeze_parameters() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->unispeech | |
def freeze_base_model(self): | |
""" | |
Calling this function will disable the gradient computation for the base model so that its parameters will not | |
be updated during training. Only the classification head will be updated. | |
""" | |
for param in self.unispeech.parameters(): | |
param.requires_grad = False | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->UniSpeech, wav2vec2->unispeech | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.Tensor] = None, | |
) -> Union[Tuple, SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states | |
outputs = self.unispeech( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if self.config.use_weighted_layer_sum: | |
hidden_states = outputs[_HIDDEN_STATES_START_POSITION] | |
hidden_states = torch.stack(hidden_states, dim=1) | |
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) | |
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) | |
else: | |
hidden_states = outputs[0] | |
hidden_states = self.projector(hidden_states) | |
if attention_mask is None: | |
pooled_output = hidden_states.mean(dim=1) | |
else: | |
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) | |
hidden_states[~padding_mask] = 0.0 | |
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |