Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/upernet
/configuration_upernet.py
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""UperNet model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
from ...utils.backbone_utils import verify_backbone_config_arguments | |
from ..auto.configuration_auto import CONFIG_MAPPING | |
logger = logging.get_logger(__name__) | |
class UperNetConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of an [`UperNetForSemanticSegmentation`]. It is used to | |
instantiate an UperNet model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the UperNet | |
[openmmlab/upernet-convnext-tiny](https://huggingface.co/openmmlab/upernet-convnext-tiny) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `ResNetConfig()`): | |
The configuration of the backbone model. | |
backbone (`str`, *optional*): | |
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this | |
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` | |
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. | |
use_pretrained_backbone (`bool`, *optional*, `False`): | |
Whether to use pretrained weights for the backbone. | |
use_timm_backbone (`bool`, *optional*, `False`): | |
Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers | |
library. | |
backbone_kwargs (`dict`, *optional*): | |
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint | |
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. | |
hidden_size (`int`, *optional*, defaults to 512): | |
The number of hidden units in the convolutional layers. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`): | |
Pooling scales used in Pooling Pyramid Module applied on the last feature map. | |
use_auxiliary_head (`bool`, *optional*, defaults to `True`): | |
Whether to use an auxiliary head during training. | |
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4): | |
Weight of the cross-entropy loss of the auxiliary head. | |
auxiliary_channels (`int`, *optional*, defaults to 256): | |
Number of channels to use in the auxiliary head. | |
auxiliary_num_convs (`int`, *optional*, defaults to 1): | |
Number of convolutional layers to use in the auxiliary head. | |
auxiliary_concat_input (`bool`, *optional*, defaults to `False`): | |
Whether to concatenate the output of the auxiliary head with the input before the classification layer. | |
loss_ignore_index (`int`, *optional*, defaults to 255): | |
The index that is ignored by the loss function. | |
Examples: | |
```python | |
>>> from transformers import UperNetConfig, UperNetForSemanticSegmentation | |
>>> # Initializing a configuration | |
>>> configuration = UperNetConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = UperNetForSemanticSegmentation(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "upernet" | |
def __init__( | |
self, | |
backbone_config=None, | |
backbone=None, | |
use_pretrained_backbone=False, | |
use_timm_backbone=False, | |
backbone_kwargs=None, | |
hidden_size=512, | |
initializer_range=0.02, | |
pool_scales=[1, 2, 3, 6], | |
use_auxiliary_head=True, | |
auxiliary_loss_weight=0.4, | |
auxiliary_in_channels=384, | |
auxiliary_channels=256, | |
auxiliary_num_convs=1, | |
auxiliary_concat_input=False, | |
loss_ignore_index=255, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
if backbone_config is None and backbone is None: | |
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") | |
backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) | |
elif isinstance(backbone_config, dict): | |
backbone_model_type = backbone_config.get("model_type") | |
config_class = CONFIG_MAPPING[backbone_model_type] | |
backbone_config = config_class.from_dict(backbone_config) | |
verify_backbone_config_arguments( | |
use_timm_backbone=use_timm_backbone, | |
use_pretrained_backbone=use_pretrained_backbone, | |
backbone=backbone, | |
backbone_config=backbone_config, | |
backbone_kwargs=backbone_kwargs, | |
) | |
self.backbone_config = backbone_config | |
self.backbone = backbone | |
self.use_pretrained_backbone = use_pretrained_backbone | |
self.use_timm_backbone = use_timm_backbone | |
self.backbone_kwargs = backbone_kwargs | |
self.hidden_size = hidden_size | |
self.initializer_range = initializer_range | |
self.pool_scales = pool_scales | |
self.use_auxiliary_head = use_auxiliary_head | |
self.auxiliary_loss_weight = auxiliary_loss_weight | |
self.auxiliary_in_channels = auxiliary_in_channels | |
self.auxiliary_channels = auxiliary_channels | |
self.auxiliary_num_convs = auxiliary_num_convs | |
self.auxiliary_concat_input = auxiliary_concat_input | |
self.loss_ignore_index = loss_ignore_index | |