Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/upernet
/modeling_upernet.py
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch UperNet model. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.""" | |
from typing import List, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from ...modeling_outputs import SemanticSegmenterOutput | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings | |
from ...utils.backbone_utils import load_backbone | |
from .configuration_upernet import UperNetConfig | |
# General docstring | |
_CONFIG_FOR_DOC = "UperNetConfig" | |
class UperNetConvModule(nn.Module): | |
""" | |
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution | |
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: Union[int, Tuple[int, int]], | |
padding: Union[int, Tuple[int, int], str] = 0, | |
bias: bool = False, | |
dilation: Union[int, Tuple[int, int]] = 1, | |
) -> None: | |
super().__init__() | |
self.conv = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
padding=padding, | |
bias=bias, | |
dilation=dilation, | |
) | |
self.batch_norm = nn.BatchNorm2d(out_channels) | |
self.activation = nn.ReLU() | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
output = self.conv(input) | |
output = self.batch_norm(output) | |
output = self.activation(output) | |
return output | |
class UperNetPyramidPoolingBlock(nn.Module): | |
def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None: | |
super().__init__() | |
self.layers = [ | |
nn.AdaptiveAvgPool2d(pool_scale), | |
UperNetConvModule(in_channels, channels, kernel_size=1), | |
] | |
for i, layer in enumerate(self.layers): | |
self.add_module(str(i), layer) | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
hidden_state = input | |
for layer in self.layers: | |
hidden_state = layer(hidden_state) | |
return hidden_state | |
class UperNetPyramidPoolingModule(nn.Module): | |
""" | |
Pyramid Pooling Module (PPM) used in PSPNet. | |
Args: | |
pool_scales (`Tuple[int]`): | |
Pooling scales used in Pooling Pyramid Module. | |
in_channels (`int`): | |
Input channels. | |
channels (`int`): | |
Channels after modules, before conv_seg. | |
align_corners (`bool`): | |
align_corners argument of F.interpolate. | |
""" | |
def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None: | |
super().__init__() | |
self.pool_scales = pool_scales | |
self.align_corners = align_corners | |
self.in_channels = in_channels | |
self.channels = channels | |
self.blocks = [] | |
for i, pool_scale in enumerate(pool_scales): | |
block = UperNetPyramidPoolingBlock(pool_scale=pool_scale, in_channels=in_channels, channels=channels) | |
self.blocks.append(block) | |
self.add_module(str(i), block) | |
def forward(self, x: torch.Tensor) -> List[torch.Tensor]: | |
ppm_outs = [] | |
for ppm in self.blocks: | |
ppm_out = ppm(x) | |
upsampled_ppm_out = nn.functional.interpolate( | |
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners | |
) | |
ppm_outs.append(upsampled_ppm_out) | |
return ppm_outs | |
class UperNetHead(nn.Module): | |
""" | |
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of | |
[UPerNet](https://arxiv.org/abs/1807.10221). | |
""" | |
def __init__(self, config, in_channels): | |
super().__init__() | |
self.config = config | |
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) | |
self.in_channels = in_channels | |
self.channels = config.hidden_size | |
self.align_corners = False | |
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) | |
# PSP Module | |
self.psp_modules = UperNetPyramidPoolingModule( | |
self.pool_scales, | |
self.in_channels[-1], | |
self.channels, | |
align_corners=self.align_corners, | |
) | |
self.bottleneck = UperNetConvModule( | |
self.in_channels[-1] + len(self.pool_scales) * self.channels, | |
self.channels, | |
kernel_size=3, | |
padding=1, | |
) | |
# FPN Module | |
self.lateral_convs = nn.ModuleList() | |
self.fpn_convs = nn.ModuleList() | |
for in_channels in self.in_channels[:-1]: # skip the top layer | |
l_conv = UperNetConvModule(in_channels, self.channels, kernel_size=1) | |
fpn_conv = UperNetConvModule(self.channels, self.channels, kernel_size=3, padding=1) | |
self.lateral_convs.append(l_conv) | |
self.fpn_convs.append(fpn_conv) | |
self.fpn_bottleneck = UperNetConvModule( | |
len(self.in_channels) * self.channels, | |
self.channels, | |
kernel_size=3, | |
padding=1, | |
) | |
def init_weights(self): | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Conv2d): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
def psp_forward(self, inputs): | |
x = inputs[-1] | |
psp_outs = [x] | |
psp_outs.extend(self.psp_modules(x)) | |
psp_outs = torch.cat(psp_outs, dim=1) | |
output = self.bottleneck(psp_outs) | |
return output | |
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: | |
# build laterals | |
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] | |
laterals.append(self.psp_forward(encoder_hidden_states)) | |
# build top-down path | |
used_backbone_levels = len(laterals) | |
for i in range(used_backbone_levels - 1, 0, -1): | |
prev_shape = laterals[i - 1].shape[2:] | |
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate( | |
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners | |
) | |
# build outputs | |
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] | |
# append psp feature | |
fpn_outs.append(laterals[-1]) | |
for i in range(used_backbone_levels - 1, 0, -1): | |
fpn_outs[i] = nn.functional.interpolate( | |
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners | |
) | |
fpn_outs = torch.cat(fpn_outs, dim=1) | |
output = self.fpn_bottleneck(fpn_outs) | |
output = self.classifier(output) | |
return output | |
class UperNetFCNHead(nn.Module): | |
""" | |
Fully Convolution Networks for Semantic Segmentation. This head is the implementation of | |
[FCNNet](https://arxiv.org/abs/1411.4038>). | |
Args: | |
config: | |
Configuration. | |
in_channels (int): | |
Number of input channels. | |
kernel_size (int): | |
The kernel size for convs in the head. Default: 3. | |
dilation (int): | |
The dilation rate for convs in the head. Default: 1. | |
""" | |
def __init__( | |
self, config, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1 | |
) -> None: | |
super().__init__() | |
self.config = config | |
self.in_channels = config.auxiliary_in_channels | |
self.channels = config.auxiliary_channels | |
self.num_convs = config.auxiliary_num_convs | |
self.concat_input = config.auxiliary_concat_input | |
self.in_index = in_index | |
conv_padding = (kernel_size // 2) * dilation | |
convs = [] | |
convs.append( | |
UperNetConvModule( | |
self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation | |
) | |
) | |
for i in range(self.num_convs - 1): | |
convs.append( | |
UperNetConvModule( | |
self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation | |
) | |
) | |
if self.num_convs == 0: | |
self.convs = nn.Identity() | |
else: | |
self.convs = nn.Sequential(*convs) | |
if self.concat_input: | |
self.conv_cat = UperNetConvModule( | |
self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2 | |
) | |
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) | |
def init_weights(self): | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Conv2d): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: | |
# just take the relevant feature maps | |
hidden_states = encoder_hidden_states[self.in_index] | |
output = self.convs(hidden_states) | |
if self.concat_input: | |
output = self.conv_cat(torch.cat([hidden_states, output], dim=1)) | |
output = self.classifier(output) | |
return output | |
class UperNetPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = UperNetConfig | |
main_input_name = "pixel_values" | |
_no_split_modules = [] | |
def _init_weights(self, module): | |
if isinstance(module, UperNetPreTrainedModel): | |
module.backbone.init_weights() | |
module.decode_head.init_weights() | |
if module.auxiliary_head is not None: | |
module.auxiliary_head.init_weights() | |
def init_weights(self): | |
"""Initialize the weights""" | |
self.backbone.init_weights() | |
self.decode_head.init_weights() | |
if self.auxiliary_head is not None: | |
self.auxiliary_head.init_weights() | |
UPERNET_START_DOCSTRING = r""" | |
Parameters: | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
UPERNET_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
[`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See | |
`attentions` under returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under | |
returned tensors for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class UperNetForSemanticSegmentation(UperNetPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.backbone = load_backbone(config) | |
# Semantic segmentation head(s) | |
self.decode_head = UperNetHead(config, in_channels=self.backbone.channels) | |
self.auxiliary_head = UperNetFCNHead(config) if config.use_auxiliary_head else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
labels: Optional[torch.Tensor] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, SemanticSegmenterOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): | |
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoImageProcessor, UperNetForSemanticSegmentation | |
>>> from PIL import Image | |
>>> from huggingface_hub import hf_hub_download | |
>>> image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny") | |
>>> model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny") | |
>>> filepath = hf_hub_download( | |
... repo_id="hf-internal-testing/fixtures_ade20k", filename="ADE_val_00000001.jpg", repo_type="dataset" | |
... ) | |
>>> image = Image.open(filepath).convert("RGB") | |
>>> inputs = image_processor(images=image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> logits = outputs.logits # shape (batch_size, num_labels, height, width) | |
>>> list(logits.shape) | |
[1, 150, 512, 512] | |
```""" | |
if labels is not None and self.config.num_labels == 1: | |
raise ValueError("The number of labels should be greater than one") | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
outputs = self.backbone.forward_with_filtered_kwargs( | |
pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions | |
) | |
features = outputs.feature_maps | |
logits = self.decode_head(features) | |
logits = nn.functional.interpolate(logits, size=pixel_values.shape[2:], mode="bilinear", align_corners=False) | |
auxiliary_logits = None | |
if self.auxiliary_head is not None: | |
auxiliary_logits = self.auxiliary_head(features) | |
auxiliary_logits = nn.functional.interpolate( | |
auxiliary_logits, size=pixel_values.shape[2:], mode="bilinear", align_corners=False | |
) | |
loss = None | |
if labels is not None: | |
# compute weighted loss | |
loss_fct = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index) | |
loss = loss_fct(logits, labels) | |
if auxiliary_logits is not None: | |
auxiliary_loss = loss_fct(auxiliary_logits, labels) | |
loss += self.config.auxiliary_loss_weight * auxiliary_loss | |
if not return_dict: | |
if output_hidden_states: | |
output = (logits,) + outputs[1:] | |
else: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SemanticSegmenterOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |