Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/vitdet
/modeling_vitdet.py
# coding=utf-8 | |
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch ViTDet backbone.""" | |
import collections.abc | |
import math | |
from typing import Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from ...activations import ACT2FN | |
from ...modeling_outputs import BackboneOutput, BaseModelOutput | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from ...utils.backbone_utils import BackboneMixin | |
from .configuration_vitdet import VitDetConfig | |
logger = logging.get_logger(__name__) | |
# General docstring | |
_CONFIG_FOR_DOC = "VitDetConfig" | |
class VitDetEmbeddings(nn.Module): | |
""" | |
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial | |
`hidden_states` (patch embeddings) to be consumed by a Transformer. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
image_size, patch_size = config.pretrain_image_size, config.patch_size | |
num_channels, hidden_size = config.num_channels, config.hidden_size | |
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) | |
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.num_patches = num_patches | |
if config.use_absolute_position_embeddings: | |
# Initialize absolute positional embedding with pretrain image size. | |
num_positions = num_patches + 1 | |
self.position_embeddings = nn.Parameter(torch.zeros(1, num_positions, config.hidden_size)) | |
else: | |
self.position_embeddings = None | |
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) | |
def get_absolute_positions(self, abs_pos_embeddings, has_cls_token, height, width): | |
""" | |
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token dimension for the | |
original embeddings. | |
Args: | |
abs_pos_embeddings (`torch.Tensor`): | |
Absolute positional embeddings with (1, num_position, num_channels). | |
has_cls_token (`bool`): | |
If true, has 1 embedding in abs_pos_embeddings for cls token. | |
height (`int`): | |
Height of input image tokens. | |
width (`int`): | |
Width of input image tokens. | |
Returns: | |
Absolute positional embeddings after processing with shape (1, height, width, num_channels) | |
""" | |
if has_cls_token: | |
abs_pos_embeddings = abs_pos_embeddings[:, 1:] | |
num_position = abs_pos_embeddings.shape[1] | |
size = int(math.sqrt(num_position)) # This is a constant and can be recorded as such in the ONNX export. | |
if size * size != num_position: | |
raise ValueError("Absolute position embeddings must be a square number.") | |
if torch.jit.is_tracing() or (size != height or size != width): | |
# nn.functional.interpolate is a noop in case size == height and size == width - we need to always capture this path with jit.trace. | |
new_abs_pos_embeddings = nn.functional.interpolate( | |
abs_pos_embeddings.reshape(1, size, size, -1).permute(0, 3, 1, 2), | |
size=(height, width), | |
mode="bicubic", | |
align_corners=False, | |
) | |
return new_abs_pos_embeddings.permute(0, 2, 3, 1) | |
else: | |
return abs_pos_embeddings.reshape(1, height, width, -1) | |
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: | |
num_channels = pixel_values.shape[1] | |
if num_channels != self.num_channels: | |
raise ValueError( | |
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." | |
f" Expected {self.num_channels} but got {num_channels}." | |
) | |
embeddings = self.projection(pixel_values) | |
if self.position_embeddings is not None: | |
# (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) | |
embeddings = embeddings.permute(0, 2, 3, 1) | |
# add position embeddings | |
embeddings = embeddings + self.get_absolute_positions( | |
self.position_embeddings, True, embeddings.shape[1], embeddings.shape[2] | |
) | |
# (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width) | |
embeddings = embeddings.permute(0, 3, 1, 2) | |
return embeddings | |
# nn.functional.interpolate's `size` needs to be dynamic. | |
def get_rel_pos(q_size, k_size, rel_pos): | |
""" | |
Get relative positional embeddings according to the relative positions of query and key sizes. | |
Args: | |
q_size (`int`): | |
Size of query q. | |
k_size (`int`): | |
Size of key k. | |
rel_pos (`torch.Tensor`): | |
Relative position embeddings (num_embeddings, num_channels). | |
Returns: | |
Extracted positional embeddings according to relative positions. | |
""" | |
max_rel_dist = int(2 * max(q_size, k_size) - 1) | |
# Interpolate rel pos if needed. | |
if rel_pos.shape[0] != max_rel_dist: | |
# Interpolate rel position embeddings. | |
rel_pos_resized = nn.functional.interpolate( | |
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), | |
size=max_rel_dist, | |
mode="linear", | |
) | |
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) | |
else: | |
rel_pos_resized = rel_pos | |
# Scale the coords with short length if shapes for q and k are different. | |
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) | |
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) | |
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) | |
return rel_pos_resized[relative_coords.long()] | |
def add_decomposed_relative_positions(attn, queries, rel_pos_h, rel_pos_w, q_size, k_size): | |
""" | |
Calculate decomposed Relative Positional Embeddings as introduced in | |
[MViT2](https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py). | |
Args: | |
attn (`torch.Tensor`): | |
Attention map. | |
queries (`torch.Tensor`): | |
Query q in the attention layer with shape (batch_size, queries_height * queries_width, num_channels). | |
rel_pos_h (`torch.Tensor`): | |
Relative position embeddings (Lh, num_channels) for height axis. | |
rel_pos_w (`torch.Tensor`): | |
Relative position embeddings (Lw, num_channels) for width axis. | |
q_size (`Tuple[int]`): | |
Spatial sequence size of query q with (queries_height, queries_width). | |
k_size (`Tuple[int]`): | |
Spatial sequence size of key k with (keys_height, keys_width). | |
Returns: | |
attn (Tensor): attention map with added relative positional embeddings. | |
""" | |
queries_height, queries_width = q_size | |
keys_height, keys_width = k_size | |
relative_height = get_rel_pos(queries_height, keys_height, rel_pos_h) | |
relative_width = get_rel_pos(queries_width, keys_width, rel_pos_w) | |
batch_size, _, dim = queries.shape | |
r_q = queries.reshape(batch_size, queries_height, queries_width, dim) | |
relative_height = torch.einsum("bhwc,hkc->bhwk", r_q, relative_height) | |
relative_weight = torch.einsum("bhwc,wkc->bhwk", r_q, relative_width) | |
attn = ( | |
attn.view(batch_size, queries_height, queries_width, keys_height, keys_width) | |
+ relative_height[:, :, :, :, None] | |
+ relative_weight[:, :, :, None, :] | |
).view(batch_size, queries_height * queries_width, keys_height * keys_width) | |
return attn | |
class VitDetAttention(nn.Module): | |
"""Multi-head Attention block with relative position embeddings.""" | |
def __init__(self, config, input_size=None): | |
""" | |
Args: | |
config (`VitDetConfig`): | |
Model configuration. | |
input_size (`Tuple[int]`, *optional*): | |
Input resolution, only required in case relative position embeddings are added. | |
""" | |
super().__init__() | |
dim = config.hidden_size | |
num_heads = config.num_attention_heads | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias) | |
self.proj = nn.Linear(dim, dim) | |
self.use_relative_position_embeddings = config.use_relative_position_embeddings | |
if self.use_relative_position_embeddings: | |
# initialize relative positional embeddings | |
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) | |
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) | |
def forward(self, hidden_state, output_attentions=False): | |
batch_size, height, width, _ = hidden_state.shape | |
# qkv with shape (3, batch_size, num_heads, height * width, num_channels) | |
qkv = self.qkv(hidden_state).reshape(batch_size, height * width, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
# queries, keys and values have shape (batch_size * num_heads, height * width, num_channels) | |
queries, keys, values = qkv.reshape(3, batch_size * self.num_heads, height * width, -1).unbind(0) | |
attention_scores = (queries * self.scale) @ keys.transpose(-2, -1) | |
if self.use_relative_position_embeddings: | |
attention_scores = add_decomposed_relative_positions( | |
attention_scores, queries, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width) | |
) | |
attention_probs = attention_scores.softmax(dim=-1) | |
hidden_state = attention_probs @ values | |
hidden_state = hidden_state.view(batch_size, self.num_heads, height, width, -1) | |
hidden_state = hidden_state.permute(0, 2, 3, 1, 4) | |
hidden_state = hidden_state.reshape(batch_size, height, width, -1) | |
hidden_state = self.proj(hidden_state) | |
if output_attentions: | |
attention_probs = attention_probs.reshape( | |
batch_size, self.num_heads, attention_probs.shape[-2], attention_probs.shape[-1] | |
) | |
outputs = (hidden_state, attention_probs) | |
else: | |
outputs = (hidden_state,) | |
return outputs | |
# Copied from transformers.models.beit.modeling_beit.drop_path | |
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: | |
""" | |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, | |
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the | |
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the | |
argument. | |
""" | |
if drop_prob == 0.0 or not training: | |
return input | |
keep_prob = 1 - drop_prob | |
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) | |
random_tensor.floor_() # binarize | |
output = input.div(keep_prob) * random_tensor | |
return output | |
# Copied from transformers.models.beit.modeling_beit.BeitDropPath | |
class VitDetDropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob: Optional[float] = None) -> None: | |
super().__init__() | |
self.drop_prob = drop_prob | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
return drop_path(hidden_states, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return "p={}".format(self.drop_prob) | |
class VitDetLayerNorm(nn.Module): | |
""" | |
A LayerNorm variant, popularized by Transformers, that performs point-wise mean and variance normalization over the | |
channel dimension for inputs that have shape (batch_size, channels, height, width). | |
https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 | |
""" | |
def __init__(self, normalized_shape, eps=1e-6): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.normalized_shape = (normalized_shape,) | |
def forward(self, x): | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
class VitDetResBottleneckBlock(nn.Module): | |
""" | |
The standard bottleneck residual block without the last activation layer. It contains 3 conv layers with kernels | |
1x1, 3x3, 1x1. | |
""" | |
def __init__(self, config, in_channels, out_channels, bottleneck_channels): | |
""" | |
Args: | |
config (`VitDetConfig`): | |
Model configuration. | |
in_channels (`int`): | |
Number of input channels. | |
out_channels (`int`): | |
Number of output channels. | |
bottleneck_channels (`int`): | |
Number of output channels for the 3x3 "bottleneck" conv layers. | |
""" | |
super().__init__() | |
self.conv1 = nn.Conv2d(in_channels, bottleneck_channels, 1, bias=False) | |
self.norm1 = VitDetLayerNorm(bottleneck_channels) | |
self.act1 = ACT2FN[config.hidden_act] | |
self.conv2 = nn.Conv2d(bottleneck_channels, bottleneck_channels, 3, padding=1, bias=False) | |
self.norm2 = VitDetLayerNorm(bottleneck_channels) | |
self.act2 = ACT2FN[config.hidden_act] | |
self.conv3 = nn.Conv2d(bottleneck_channels, out_channels, 1, bias=False) | |
self.norm3 = VitDetLayerNorm(out_channels) | |
def forward(self, x): | |
out = x | |
for layer in self.children(): | |
out = layer(out) | |
out = x + out | |
return out | |
class VitDetMlp(nn.Module): | |
def __init__(self, config, in_features: int, hidden_features: int) -> None: | |
super().__init__() | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = ACT2FN[config.hidden_act] | |
self.fc2 = nn.Linear(hidden_features, in_features) | |
self.drop = nn.Dropout(config.dropout_prob) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
def window_partition(hidden_state, window_size): | |
""" | |
Partition into non-overlapping windows with padding if needed. | |
Args: | |
hidden_state (`torch.Tensor`): | |
Input tokens with [batch_size, height, width, num_channels]. | |
window_size (`int`): | |
Window size. | |
Returns: | |
`tuple(torch.FloatTensor)` comprising various elements: | |
- windows: windows after partition with [batch_size * num_windows, window_size, window_size, num_channels]. | |
- (padded_height, padded_width): padded height and width before partition | |
""" | |
batch_size, height, width, num_channels = hidden_state.shape | |
pad_height = (window_size - height % window_size) % window_size | |
pad_width = (window_size - width % window_size) % window_size | |
# Noop in case pad_width == 0 and pad_height == 0. | |
hidden_state = nn.functional.pad(hidden_state, (0, 0, 0, pad_width, 0, pad_height)) | |
padded_height, padded_width = height + pad_height, width + pad_width | |
hidden_state = hidden_state.view( | |
batch_size, padded_height // window_size, window_size, padded_width // window_size, window_size, num_channels | |
) | |
windows = hidden_state.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) | |
return windows, (padded_height, padded_width) | |
def window_unpartition(windows, window_size, pad_height_width, height_width): | |
""" | |
Window unpartition into original sequences and removing padding. | |
Args: | |
windows (`torch.Tensor`): | |
Input tokens with [batch_size * num_windows, window_size, window_size, num_channels]. | |
window_size (`int`): | |
Window size. | |
pad_height_width (`Tuple[int]`): | |
Padded height and width (padded_height, padded_width). | |
height_width (`Tuple[int]`): | |
Original height and width before padding. | |
Returns: | |
hidden_state: unpartitioned sequences with [batch_size, height, width, num_channels]. | |
""" | |
padded_height, padded_width = pad_height_width | |
height, width = height_width | |
batch_size = windows.shape[0] // (padded_height * padded_width // window_size // window_size) | |
hidden_state = windows.view( | |
batch_size, padded_height // window_size, padded_width // window_size, window_size, window_size, -1 | |
) | |
hidden_state = hidden_state.permute(0, 1, 3, 2, 4, 5).contiguous() | |
hidden_state = hidden_state.view(batch_size, padded_height, padded_width, -1) | |
# We always have height <= padded_height and width <= padded_width | |
hidden_state = hidden_state[:, :height, :width, :].contiguous() | |
return hidden_state | |
class VitDetLayer(nn.Module): | |
"""This corresponds to the Block class in the original implementation.""" | |
def __init__( | |
self, config: VitDetConfig, drop_path_rate: float = 0, window_size: int = 0, use_residual_block: bool = False | |
) -> None: | |
super().__init__() | |
dim = config.hidden_size | |
input_size = (config.image_size // config.patch_size, config.image_size // config.patch_size) | |
self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
self.attention = VitDetAttention( | |
config, input_size=input_size if window_size == 0 else (window_size, window_size) | |
) | |
self.drop_path = VitDetDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() | |
self.norm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
self.mlp = VitDetMlp(config=config, in_features=dim, hidden_features=int(dim * config.mlp_ratio)) | |
self.window_size = window_size | |
self.use_residual_block = use_residual_block | |
if self.use_residual_block: | |
# Use a residual block with bottleneck channel as dim // 2 | |
self.residual = VitDetResBottleneckBlock( | |
config=config, | |
in_channels=dim, | |
out_channels=dim, | |
bottleneck_channels=dim // 2, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
hidden_states = hidden_states.permute(0, 2, 3, 1) | |
shortcut = hidden_states | |
hidden_states = self.norm1(hidden_states) | |
# Window partition | |
if self.window_size > 0: | |
height, width = hidden_states.shape[1], hidden_states.shape[2] | |
hidden_states, pad_height_width = window_partition(hidden_states, self.window_size) | |
self_attention_outputs = self.attention( | |
hidden_states, | |
output_attentions=output_attentions, | |
) | |
hidden_states = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
# Reverse window partition | |
if self.window_size > 0: | |
hidden_states = window_unpartition(hidden_states, self.window_size, pad_height_width, (height, width)) | |
# first residual connection | |
hidden_states = shortcut + self.drop_path(hidden_states) | |
hidden_states = hidden_states + self.drop_path(self.mlp(self.norm2(hidden_states))) | |
hidden_states = hidden_states.permute(0, 3, 1, 2) | |
if self.use_residual_block: | |
hidden_states = self.residual(hidden_states) | |
outputs = (hidden_states,) + outputs | |
return outputs | |
class VitDetEncoder(nn.Module): | |
def __init__(self, config: VitDetConfig) -> None: | |
super().__init__() | |
self.config = config | |
depth = config.num_hidden_layers | |
# stochastic depth decay rule | |
drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, depth)] | |
layers = [] | |
for i in range(depth): | |
layers.append( | |
VitDetLayer( | |
config, | |
drop_path_rate=drop_path_rate[i], | |
window_size=config.window_size if i in config.window_block_indices else 0, | |
use_residual_block=i in config.residual_block_indices, | |
) | |
) | |
self.layer = nn.ModuleList(layers) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
) -> Union[tuple, BaseModelOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
layer_head_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
def caffe2_msra_fill(module: nn.Module) -> None: | |
""" | |
Initialize `module.weight` using the "MSRAFill" implemented in Caffe2. Also initializes `module.bias` to 0. | |
Source: https://detectron2.readthedocs.io/en/latest/_modules/fvcore/nn/weight_init.html. | |
Args: | |
module (torch.nn.Module): module to initialize. | |
""" | |
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
class VitDetPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = VitDetConfig | |
base_model_prefix = "vitdet" | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = True | |
_no_split_modules = [] | |
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid | |
# `trunc_normal_cpu` not implemented in `half` issues | |
module.weight.data = nn.init.trunc_normal_( | |
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range | |
).to(module.weight.dtype) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, VitDetEmbeddings): | |
module.position_embeddings.data = nn.init.trunc_normal_( | |
module.position_embeddings.data.to(torch.float32), | |
mean=0.0, | |
std=self.config.initializer_range, | |
).to(module.position_embeddings.dtype) | |
elif isinstance(module, VitDetAttention) and self.config.use_relative_position_embeddings: | |
module.rel_pos_h.data = nn.init.trunc_normal_( | |
module.rel_pos_h.data.to(torch.float32), | |
mean=0.0, | |
std=self.config.initializer_range, | |
) | |
module.rel_pos_w.data = nn.init.trunc_normal_( | |
module.rel_pos_w.data.to(torch.float32), | |
mean=0.0, | |
std=self.config.initializer_range, | |
) | |
elif isinstance(module, VitDetResBottleneckBlock): | |
for layer in [module.conv1, module.conv2, module.conv3]: | |
caffe2_msra_fill(layer) | |
for layer in [module.norm1, module.norm2]: | |
layer.weight.data.fill_(1.0) | |
layer.bias.data.zero_() | |
# zero init last norm layer. | |
module.norm3.weight.data.zero_() | |
module.norm3.bias.data.zero_() | |
VITDET_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it | |
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`VitDetConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
VITDET_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] | |
for details. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class VitDetModel(VitDetPreTrainedModel): | |
def __init__(self, config: VitDetConfig): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = VitDetEmbeddings(config) | |
self.encoder = VitDetEncoder(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> VitDetEmbeddings: | |
return self.embeddings.projection | |
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import VitDetConfig, VitDetModel | |
>>> import torch | |
>>> config = VitDetConfig() | |
>>> model = VitDetModel(config) | |
>>> pixel_values = torch.randn(1, 3, 224, 224) | |
>>> with torch.no_grad(): | |
... outputs = model(pixel_values) | |
>>> last_hidden_states = outputs.last_hidden_state | |
>>> list(last_hidden_states.shape) | |
[1, 768, 14, 14] | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings(pixel_values) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
if not return_dict: | |
return (sequence_output,) + encoder_outputs[1:] | |
return BaseModelOutput( | |
last_hidden_state=sequence_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class VitDetBackbone(VitDetPreTrainedModel, BackboneMixin): | |
def __init__(self, config): | |
super().__init__(config) | |
super()._init_backbone(config) | |
self.embeddings = VitDetEmbeddings(config) | |
self.encoder = VitDetEncoder(config) | |
self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)] | |
# initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> VitDetEmbeddings: | |
return self.embeddings.projection | |
def forward( | |
self, | |
pixel_values: torch.Tensor, | |
output_hidden_states: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> BackboneOutput: | |
""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import VitDetConfig, VitDetBackbone | |
>>> import torch | |
>>> config = VitDetConfig() | |
>>> model = VitDetBackbone(config) | |
>>> pixel_values = torch.randn(1, 3, 224, 224) | |
>>> with torch.no_grad(): | |
... outputs = model(pixel_values) | |
>>> feature_maps = outputs.feature_maps | |
>>> list(feature_maps[-1].shape) | |
[1, 768, 14, 14] | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
embedding_output = self.embeddings(pixel_values) | |
outputs = self.encoder( | |
embedding_output, | |
output_hidden_states=True, | |
output_attentions=output_attentions, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs.hidden_states if return_dict else outputs[1] | |
feature_maps = () | |
for stage, hidden_state in zip(self.stage_names, hidden_states): | |
if stage in self.out_features: | |
feature_maps += (hidden_state,) | |
if not return_dict: | |
if output_hidden_states: | |
output = (feature_maps,) + outputs[1:] | |
else: | |
output = (feature_maps,) + outputs[2:] | |
return output | |
return BackboneOutput( | |
feature_maps=feature_maps, | |
hidden_states=outputs.hidden_states if output_hidden_states else None, | |
attentions=outputs.attentions, | |
) | |