Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/vits
/modeling_vits.py
# coding=utf-8 | |
# Copyright 2023 The Kakao Enterprise Authors and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch VITS model.""" | |
import math | |
from dataclasses import dataclass | |
from typing import Any, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from ...activations import ACT2FN | |
from ...integrations.deepspeed import is_deepspeed_zero3_enabled | |
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
ModelOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings | |
from .configuration_vits import VitsConfig | |
logger = logging.get_logger(__name__) | |
# General docstring | |
_CONFIG_FOR_DOC = "VitsConfig" | |
class VitsModelOutput(ModelOutput): | |
""" | |
Describes the outputs for the VITS model, with potential hidden states and attentions. | |
Args: | |
waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): | |
The final audio waveform predicted by the model. | |
sequence_lengths (`torch.FloatTensor` of shape `(batch_size,)`): | |
The length in samples of each element in the `waveform` batch. | |
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`): | |
The log-mel spectrogram predicted at the output of the flow model. This spectrogram is passed to the Hi-Fi | |
GAN decoder model to obtain the final audio waveform. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attention weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
waveform: torch.FloatTensor = None | |
sequence_lengths: torch.FloatTensor = None | |
spectrogram: Optional[Tuple[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class VitsTextEncoderOutput(ModelOutput): | |
""" | |
Describes the outputs for the VITS text encoder model, with potential hidden states and attentions. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
prior_means (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
The predicted mean values of the prior distribution for the latent text variables. | |
prior_log_variances (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
The predicted log-variance values of the prior distribution for the latent text variables. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attention weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
prior_means: torch.FloatTensor = None | |
prior_log_variances: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, num_channels): | |
in_act = input_a + input_b | |
t_act = torch.tanh(in_act[:, :num_channels, :]) | |
s_act = torch.sigmoid(in_act[:, num_channels:, :]) | |
acts = t_act * s_act | |
return acts | |
def _unconstrained_rational_quadratic_spline( | |
inputs, | |
unnormalized_widths, | |
unnormalized_heights, | |
unnormalized_derivatives, | |
reverse=False, | |
tail_bound=5.0, | |
min_bin_width=1e-3, | |
min_bin_height=1e-3, | |
min_derivative=1e-3, | |
): | |
""" | |
This transformation represents a monotonically increasing piecewise rational quadratic function. Outside of the | |
`tail_bound`, the transform behaves as an identity function. | |
Args: | |
inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: | |
Second half of the hidden-states input to the Vits convolutional flow module. | |
unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): | |
First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection | |
layer in the convolutional flow module | |
unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): | |
Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection | |
layer in the convolutional flow module | |
unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): | |
Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection | |
layer in the convolutional flow module | |
reverse (`bool`, *optional*, defaults to `False`): | |
Whether the model is being run in reverse mode. | |
tail_bound (`float`, *optional* defaults to 5): | |
Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the | |
transform behaves as an identity function. | |
min_bin_width (`float`, *optional*, defaults to 1e-3): | |
Minimum bin value across the width dimension for the piecewise rational quadratic function. | |
min_bin_height (`float`, *optional*, defaults to 1e-3): | |
Minimum bin value across the height dimension for the piecewise rational quadratic function. | |
min_derivative (`float`, *optional*, defaults to 1e-3): | |
Minimum bin value across the derivatives for the piecewise rational quadratic function. | |
Returns: | |
outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: | |
Hidden-states as transformed by the piecewise rational quadratic function with the `tail_bound` limits | |
applied. | |
log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: | |
Logarithm of the absolute value of the determinants corresponding to the `outputs` with the `tail_bound` | |
limits applied. | |
""" | |
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) | |
outside_interval_mask = ~inside_interval_mask | |
outputs = torch.zeros_like(inputs) | |
log_abs_det = torch.zeros_like(inputs) | |
constant = np.log(np.exp(1 - min_derivative) - 1) | |
unnormalized_derivatives = nn.functional.pad(unnormalized_derivatives, pad=(1, 1)) | |
unnormalized_derivatives[..., 0] = constant | |
unnormalized_derivatives[..., -1] = constant | |
outputs[outside_interval_mask] = inputs[outside_interval_mask] | |
log_abs_det[outside_interval_mask] = 0.0 | |
outputs[inside_interval_mask], log_abs_det[inside_interval_mask] = _rational_quadratic_spline( | |
inputs=inputs[inside_interval_mask], | |
unnormalized_widths=unnormalized_widths[inside_interval_mask, :], | |
unnormalized_heights=unnormalized_heights[inside_interval_mask, :], | |
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], | |
reverse=reverse, | |
tail_bound=tail_bound, | |
min_bin_width=min_bin_width, | |
min_bin_height=min_bin_height, | |
min_derivative=min_derivative, | |
) | |
return outputs, log_abs_det | |
def _rational_quadratic_spline( | |
inputs, | |
unnormalized_widths, | |
unnormalized_heights, | |
unnormalized_derivatives, | |
reverse, | |
tail_bound, | |
min_bin_width, | |
min_bin_height, | |
min_derivative, | |
): | |
""" | |
This transformation represents a monotonically increasing piecewise rational quadratic function. Unlike the | |
function `_unconstrained_rational_quadratic_spline`, the function behaves the same across the `tail_bound`. | |
Args: | |
inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: | |
Second half of the hidden-states input to the Vits convolutional flow module. | |
unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): | |
First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection | |
layer in the convolutional flow module | |
unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): | |
Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection | |
layer in the convolutional flow module | |
unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): | |
Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection | |
layer in the convolutional flow module | |
reverse (`bool`): | |
Whether the model is being run in reverse mode. | |
tail_bound (`float`): | |
Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the | |
transform behaves as an identity function. | |
min_bin_width (`float`): | |
Minimum bin value across the width dimension for the piecewise rational quadratic function. | |
min_bin_height (`float`): | |
Minimum bin value across the height dimension for the piecewise rational quadratic function. | |
min_derivative (`float`): | |
Minimum bin value across the derivatives for the piecewise rational quadratic function. | |
Returns: | |
outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: | |
Hidden-states as transformed by the piecewise rational quadratic function. | |
log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: | |
Logarithm of the absolute value of the determinants corresponding to the `outputs`. | |
""" | |
upper_bound = tail_bound | |
lower_bound = -tail_bound | |
if torch.min(inputs) < lower_bound or torch.max(inputs) > upper_bound: | |
raise ValueError("Input to a transform is not within its domain") | |
num_bins = unnormalized_widths.shape[-1] | |
if min_bin_width * num_bins > 1.0: | |
raise ValueError(f"Minimal bin width {min_bin_width} too large for the number of bins {num_bins}") | |
if min_bin_height * num_bins > 1.0: | |
raise ValueError(f"Minimal bin height {min_bin_height} too large for the number of bins {num_bins}") | |
widths = nn.functional.softmax(unnormalized_widths, dim=-1) | |
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths | |
cumwidths = torch.cumsum(widths, dim=-1) | |
cumwidths = nn.functional.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0) | |
cumwidths = (upper_bound - lower_bound) * cumwidths + lower_bound | |
cumwidths[..., 0] = lower_bound | |
cumwidths[..., -1] = upper_bound | |
widths = cumwidths[..., 1:] - cumwidths[..., :-1] | |
derivatives = min_derivative + nn.functional.softplus(unnormalized_derivatives) | |
heights = nn.functional.softmax(unnormalized_heights, dim=-1) | |
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights | |
cumheights = torch.cumsum(heights, dim=-1) | |
cumheights = nn.functional.pad(cumheights, pad=(1, 0), mode="constant", value=0.0) | |
cumheights = (upper_bound - lower_bound) * cumheights + lower_bound | |
cumheights[..., 0] = lower_bound | |
cumheights[..., -1] = upper_bound | |
heights = cumheights[..., 1:] - cumheights[..., :-1] | |
bin_locations = cumheights if reverse else cumwidths | |
bin_locations[..., -1] += 1e-6 | |
bin_idx = torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1 | |
bin_idx = bin_idx[..., None] | |
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] | |
input_bin_widths = widths.gather(-1, bin_idx)[..., 0] | |
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] | |
delta = heights / widths | |
input_delta = delta.gather(-1, bin_idx)[..., 0] | |
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] | |
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] | |
input_heights = heights.gather(-1, bin_idx)[..., 0] | |
intermediate1 = input_derivatives + input_derivatives_plus_one - 2 * input_delta | |
if not reverse: | |
theta = (inputs - input_cumwidths) / input_bin_widths | |
theta_one_minus_theta = theta * (1 - theta) | |
numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta) | |
denominator = input_delta + intermediate1 * theta_one_minus_theta | |
outputs = input_cumheights + numerator / denominator | |
derivative_numerator = input_delta.pow(2) * ( | |
input_derivatives_plus_one * theta.pow(2) | |
+ 2 * input_delta * theta_one_minus_theta | |
+ input_derivatives * (1 - theta).pow(2) | |
) | |
log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator) | |
return outputs, log_abs_det | |
else: | |
# find the roots of a quadratic equation | |
intermediate2 = inputs - input_cumheights | |
intermediate3 = intermediate2 * intermediate1 | |
a = input_heights * (input_delta - input_derivatives) + intermediate3 | |
b = input_heights * input_derivatives - intermediate3 | |
c = -input_delta * intermediate2 | |
discriminant = b.pow(2) - 4 * a * c | |
if not (discriminant >= 0).all(): | |
raise RuntimeError(f"invalid discriminant {discriminant}") | |
root = (2 * c) / (-b - torch.sqrt(discriminant)) | |
outputs = root * input_bin_widths + input_cumwidths | |
theta_one_minus_theta = root * (1 - root) | |
denominator = input_delta + intermediate1 * theta_one_minus_theta | |
derivative_numerator = input_delta.pow(2) * ( | |
input_derivatives_plus_one * root.pow(2) | |
+ 2 * input_delta * theta_one_minus_theta | |
+ input_derivatives * (1 - root).pow(2) | |
) | |
log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator) | |
return outputs, -log_abs_det | |
class VitsWaveNet(torch.nn.Module): | |
def __init__(self, config: VitsConfig, num_layers: int): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.num_layers = num_layers | |
self.in_layers = torch.nn.ModuleList() | |
self.res_skip_layers = torch.nn.ModuleList() | |
self.dropout = nn.Dropout(config.wavenet_dropout) | |
if hasattr(nn.utils.parametrizations, "weight_norm"): | |
weight_norm = nn.utils.parametrizations.weight_norm | |
else: | |
weight_norm = nn.utils.weight_norm | |
if config.speaker_embedding_size != 0: | |
cond_layer = torch.nn.Conv1d(config.speaker_embedding_size, 2 * config.hidden_size * num_layers, 1) | |
self.cond_layer = weight_norm(cond_layer, name="weight") | |
for i in range(num_layers): | |
dilation = config.wavenet_dilation_rate**i | |
padding = (config.wavenet_kernel_size * dilation - dilation) // 2 | |
in_layer = torch.nn.Conv1d( | |
in_channels=config.hidden_size, | |
out_channels=2 * config.hidden_size, | |
kernel_size=config.wavenet_kernel_size, | |
dilation=dilation, | |
padding=padding, | |
) | |
in_layer = weight_norm(in_layer, name="weight") | |
self.in_layers.append(in_layer) | |
# last one is not necessary | |
if i < num_layers - 1: | |
res_skip_channels = 2 * config.hidden_size | |
else: | |
res_skip_channels = config.hidden_size | |
res_skip_layer = torch.nn.Conv1d(config.hidden_size, res_skip_channels, 1) | |
res_skip_layer = weight_norm(res_skip_layer, name="weight") | |
self.res_skip_layers.append(res_skip_layer) | |
def forward(self, inputs, padding_mask, global_conditioning=None): | |
outputs = torch.zeros_like(inputs) | |
num_channels_tensor = torch.IntTensor([self.hidden_size]) | |
if global_conditioning is not None: | |
global_conditioning = self.cond_layer(global_conditioning) | |
for i in range(self.num_layers): | |
hidden_states = self.in_layers[i](inputs) | |
if global_conditioning is not None: | |
cond_offset = i * 2 * self.hidden_size | |
global_states = global_conditioning[:, cond_offset : cond_offset + 2 * self.hidden_size, :] | |
else: | |
global_states = torch.zeros_like(hidden_states) | |
acts = fused_add_tanh_sigmoid_multiply(hidden_states, global_states, num_channels_tensor[0]) | |
acts = self.dropout(acts) | |
res_skip_acts = self.res_skip_layers[i](acts) | |
if i < self.num_layers - 1: | |
res_acts = res_skip_acts[:, : self.hidden_size, :] | |
inputs = (inputs + res_acts) * padding_mask | |
outputs = outputs + res_skip_acts[:, self.hidden_size :, :] | |
else: | |
outputs = outputs + res_skip_acts | |
return outputs * padding_mask | |
def remove_weight_norm(self): | |
if self.speaker_embedding_size != 0: | |
torch.nn.utils.remove_weight_norm(self.cond_layer) | |
for layer in self.in_layers: | |
torch.nn.utils.remove_weight_norm(layer) | |
for layer in self.res_skip_layers: | |
torch.nn.utils.remove_weight_norm(layer) | |
class VitsPosteriorEncoder(nn.Module): | |
def __init__(self, config: VitsConfig): | |
super().__init__() | |
self.out_channels = config.flow_size | |
self.conv_pre = nn.Conv1d(config.spectrogram_bins, config.hidden_size, 1) | |
self.wavenet = VitsWaveNet(config, num_layers=config.posterior_encoder_num_wavenet_layers) | |
self.conv_proj = nn.Conv1d(config.hidden_size, self.out_channels * 2, 1) | |
def forward(self, inputs, padding_mask, global_conditioning=None): | |
inputs = self.conv_pre(inputs) * padding_mask | |
inputs = self.wavenet(inputs, padding_mask, global_conditioning) | |
stats = self.conv_proj(inputs) * padding_mask | |
mean, log_stddev = torch.split(stats, self.out_channels, dim=1) | |
sampled = (mean + torch.randn_like(mean) * torch.exp(log_stddev)) * padding_mask | |
return sampled, mean, log_stddev | |
# Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock | |
class HifiGanResidualBlock(nn.Module): | |
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): | |
super().__init__() | |
self.leaky_relu_slope = leaky_relu_slope | |
self.convs1 = nn.ModuleList( | |
[ | |
nn.Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
stride=1, | |
dilation=dilation[i], | |
padding=self.get_padding(kernel_size, dilation[i]), | |
) | |
for i in range(len(dilation)) | |
] | |
) | |
self.convs2 = nn.ModuleList( | |
[ | |
nn.Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
stride=1, | |
dilation=1, | |
padding=self.get_padding(kernel_size, 1), | |
) | |
for _ in range(len(dilation)) | |
] | |
) | |
def get_padding(self, kernel_size, dilation=1): | |
return (kernel_size * dilation - dilation) // 2 | |
def apply_weight_norm(self): | |
for layer in self.convs1: | |
nn.utils.weight_norm(layer) | |
for layer in self.convs2: | |
nn.utils.weight_norm(layer) | |
def remove_weight_norm(self): | |
for layer in self.convs1: | |
nn.utils.remove_weight_norm(layer) | |
for layer in self.convs2: | |
nn.utils.remove_weight_norm(layer) | |
def forward(self, hidden_states): | |
for conv1, conv2 in zip(self.convs1, self.convs2): | |
residual = hidden_states | |
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) | |
hidden_states = conv1(hidden_states) | |
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) | |
hidden_states = conv2(hidden_states) | |
hidden_states = hidden_states + residual | |
return hidden_states | |
class VitsHifiGan(nn.Module): | |
def __init__(self, config: VitsConfig): | |
super().__init__() | |
self.config = config | |
self.num_kernels = len(config.resblock_kernel_sizes) | |
self.num_upsamples = len(config.upsample_rates) | |
self.conv_pre = nn.Conv1d( | |
config.flow_size, | |
config.upsample_initial_channel, | |
kernel_size=7, | |
stride=1, | |
padding=3, | |
) | |
self.upsampler = nn.ModuleList() | |
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): | |
self.upsampler.append( | |
nn.ConvTranspose1d( | |
config.upsample_initial_channel // (2**i), | |
config.upsample_initial_channel // (2 ** (i + 1)), | |
kernel_size=kernel_size, | |
stride=upsample_rate, | |
padding=(kernel_size - upsample_rate) // 2, | |
) | |
) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.upsampler)): | |
channels = config.upsample_initial_channel // (2 ** (i + 1)) | |
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): | |
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) | |
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3, bias=False) | |
if config.speaker_embedding_size != 0: | |
self.cond = nn.Conv1d(config.speaker_embedding_size, config.upsample_initial_channel, 1) | |
def apply_weight_norm(self): | |
for layer in self.upsampler: | |
nn.utils.weight_norm(layer) | |
for layer in self.resblocks: | |
layer.apply_weight_norm() | |
def remove_weight_norm(self): | |
for layer in self.upsampler: | |
nn.utils.remove_weight_norm(layer) | |
for layer in self.resblocks: | |
layer.remove_weight_norm() | |
def forward( | |
self, spectrogram: torch.FloatTensor, global_conditioning: Optional[torch.FloatTensor] = None | |
) -> torch.FloatTensor: | |
r""" | |
Converts a spectrogram into a speech waveform. | |
Args: | |
spectrogram (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`): | |
Tensor containing the spectrograms. | |
global_conditioning (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_size, 1)`, *optional*): | |
Tensor containing speaker embeddings, for multispeaker models. | |
Returns: | |
`torch.FloatTensor`: Tensor of shape shape `(batch_size, 1, num_frames)` containing the speech waveform. | |
""" | |
hidden_states = self.conv_pre(spectrogram) | |
if global_conditioning is not None: | |
hidden_states = hidden_states + self.cond(global_conditioning) | |
for i in range(self.num_upsamples): | |
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope) | |
hidden_states = self.upsampler[i](hidden_states) | |
res_state = self.resblocks[i * self.num_kernels](hidden_states) | |
for j in range(1, self.num_kernels): | |
res_state += self.resblocks[i * self.num_kernels + j](hidden_states) | |
hidden_states = res_state / self.num_kernels | |
hidden_states = nn.functional.leaky_relu(hidden_states) | |
hidden_states = self.conv_post(hidden_states) | |
waveform = torch.tanh(hidden_states) | |
return waveform | |
class VitsResidualCouplingLayer(nn.Module): | |
def __init__(self, config: VitsConfig): | |
super().__init__() | |
self.half_channels = config.flow_size // 2 | |
self.conv_pre = nn.Conv1d(self.half_channels, config.hidden_size, 1) | |
self.wavenet = VitsWaveNet(config, num_layers=config.prior_encoder_num_wavenet_layers) | |
self.conv_post = nn.Conv1d(config.hidden_size, self.half_channels, 1) | |
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): | |
first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1) | |
hidden_states = self.conv_pre(first_half) * padding_mask | |
hidden_states = self.wavenet(hidden_states, padding_mask, global_conditioning) | |
mean = self.conv_post(hidden_states) * padding_mask | |
log_stddev = torch.zeros_like(mean) | |
if not reverse: | |
second_half = mean + second_half * torch.exp(log_stddev) * padding_mask | |
outputs = torch.cat([first_half, second_half], dim=1) | |
log_determinant = torch.sum(log_stddev, [1, 2]) | |
return outputs, log_determinant | |
else: | |
second_half = (second_half - mean) * torch.exp(-log_stddev) * padding_mask | |
outputs = torch.cat([first_half, second_half], dim=1) | |
return outputs, None | |
class VitsResidualCouplingBlock(nn.Module): | |
def __init__(self, config: VitsConfig): | |
super().__init__() | |
self.flows = nn.ModuleList() | |
for _ in range(config.prior_encoder_num_flows): | |
self.flows.append(VitsResidualCouplingLayer(config)) | |
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): | |
if not reverse: | |
for flow in self.flows: | |
inputs, _ = flow(inputs, padding_mask, global_conditioning) | |
inputs = torch.flip(inputs, [1]) | |
else: | |
for flow in reversed(self.flows): | |
inputs = torch.flip(inputs, [1]) | |
inputs, _ = flow(inputs, padding_mask, global_conditioning, reverse=True) | |
return inputs | |
class VitsDilatedDepthSeparableConv(nn.Module): | |
def __init__(self, config: VitsConfig, dropout_rate=0.0): | |
super().__init__() | |
kernel_size = config.duration_predictor_kernel_size | |
channels = config.hidden_size | |
self.num_layers = config.depth_separable_num_layers | |
self.dropout = nn.Dropout(dropout_rate) | |
self.convs_dilated = nn.ModuleList() | |
self.convs_pointwise = nn.ModuleList() | |
self.norms_1 = nn.ModuleList() | |
self.norms_2 = nn.ModuleList() | |
for i in range(self.num_layers): | |
dilation = kernel_size**i | |
padding = (kernel_size * dilation - dilation) // 2 | |
self.convs_dilated.append( | |
nn.Conv1d( | |
in_channels=channels, | |
out_channels=channels, | |
kernel_size=kernel_size, | |
groups=channels, | |
dilation=dilation, | |
padding=padding, | |
) | |
) | |
self.convs_pointwise.append(nn.Conv1d(channels, channels, 1)) | |
self.norms_1.append(nn.LayerNorm(channels)) | |
self.norms_2.append(nn.LayerNorm(channels)) | |
def forward(self, inputs, padding_mask, global_conditioning=None): | |
if global_conditioning is not None: | |
inputs = inputs + global_conditioning | |
for i in range(self.num_layers): | |
hidden_states = self.convs_dilated[i](inputs * padding_mask) | |
hidden_states = self.norms_1[i](hidden_states.transpose(1, -1)).transpose(1, -1) | |
hidden_states = nn.functional.gelu(hidden_states) | |
hidden_states = self.convs_pointwise[i](hidden_states) | |
hidden_states = self.norms_2[i](hidden_states.transpose(1, -1)).transpose(1, -1) | |
hidden_states = nn.functional.gelu(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
inputs = inputs + hidden_states | |
return inputs * padding_mask | |
class VitsConvFlow(nn.Module): | |
def __init__(self, config: VitsConfig): | |
super().__init__() | |
self.filter_channels = config.hidden_size | |
self.half_channels = config.depth_separable_channels // 2 | |
self.num_bins = config.duration_predictor_flow_bins | |
self.tail_bound = config.duration_predictor_tail_bound | |
self.conv_pre = nn.Conv1d(self.half_channels, self.filter_channels, 1) | |
self.conv_dds = VitsDilatedDepthSeparableConv(config) | |
self.conv_proj = nn.Conv1d(self.filter_channels, self.half_channels * (self.num_bins * 3 - 1), 1) | |
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): | |
first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1) | |
hidden_states = self.conv_pre(first_half) | |
hidden_states = self.conv_dds(hidden_states, padding_mask, global_conditioning) | |
hidden_states = self.conv_proj(hidden_states) * padding_mask | |
batch_size, channels, length = first_half.shape | |
hidden_states = hidden_states.reshape(batch_size, channels, -1, length).permute(0, 1, 3, 2) | |
unnormalized_widths = hidden_states[..., : self.num_bins] / math.sqrt(self.filter_channels) | |
unnormalized_heights = hidden_states[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels) | |
unnormalized_derivatives = hidden_states[..., 2 * self.num_bins :] | |
second_half, log_abs_det = _unconstrained_rational_quadratic_spline( | |
second_half, | |
unnormalized_widths, | |
unnormalized_heights, | |
unnormalized_derivatives, | |
reverse=reverse, | |
tail_bound=self.tail_bound, | |
) | |
outputs = torch.cat([first_half, second_half], dim=1) * padding_mask | |
if not reverse: | |
log_determinant = torch.sum(log_abs_det * padding_mask, [1, 2]) | |
return outputs, log_determinant | |
else: | |
return outputs, None | |
class VitsElementwiseAffine(nn.Module): | |
def __init__(self, config: VitsConfig): | |
super().__init__() | |
self.channels = config.depth_separable_channels | |
self.translate = nn.Parameter(torch.zeros(self.channels, 1)) | |
self.log_scale = nn.Parameter(torch.zeros(self.channels, 1)) | |
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): | |
if not reverse: | |
outputs = self.translate + torch.exp(self.log_scale) * inputs | |
outputs = outputs * padding_mask | |
log_determinant = torch.sum(self.log_scale * padding_mask, [1, 2]) | |
return outputs, log_determinant | |
else: | |
outputs = (inputs - self.translate) * torch.exp(-self.log_scale) * padding_mask | |
return outputs, None | |
class VitsStochasticDurationPredictor(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
embed_dim = config.speaker_embedding_size | |
filter_channels = config.hidden_size | |
self.conv_pre = nn.Conv1d(filter_channels, filter_channels, 1) | |
self.conv_proj = nn.Conv1d(filter_channels, filter_channels, 1) | |
self.conv_dds = VitsDilatedDepthSeparableConv( | |
config, | |
dropout_rate=config.duration_predictor_dropout, | |
) | |
if embed_dim != 0: | |
self.cond = nn.Conv1d(embed_dim, filter_channels, 1) | |
self.flows = nn.ModuleList() | |
self.flows.append(VitsElementwiseAffine(config)) | |
for _ in range(config.duration_predictor_num_flows): | |
self.flows.append(VitsConvFlow(config)) | |
self.post_conv_pre = nn.Conv1d(1, filter_channels, 1) | |
self.post_conv_proj = nn.Conv1d(filter_channels, filter_channels, 1) | |
self.post_conv_dds = VitsDilatedDepthSeparableConv( | |
config, | |
dropout_rate=config.duration_predictor_dropout, | |
) | |
self.post_flows = nn.ModuleList() | |
self.post_flows.append(VitsElementwiseAffine(config)) | |
for _ in range(config.duration_predictor_num_flows): | |
self.post_flows.append(VitsConvFlow(config)) | |
def forward(self, inputs, padding_mask, global_conditioning=None, durations=None, reverse=False, noise_scale=1.0): | |
inputs = torch.detach(inputs) | |
inputs = self.conv_pre(inputs) | |
if global_conditioning is not None: | |
global_conditioning = torch.detach(global_conditioning) | |
inputs = inputs + self.cond(global_conditioning) | |
inputs = self.conv_dds(inputs, padding_mask) | |
inputs = self.conv_proj(inputs) * padding_mask | |
if not reverse: | |
hidden_states = self.post_conv_pre(durations) | |
hidden_states = self.post_conv_dds(hidden_states, padding_mask) | |
hidden_states = self.post_conv_proj(hidden_states) * padding_mask | |
random_posterior = ( | |
torch.randn(durations.size(0), 2, durations.size(2)).to(device=inputs.device, dtype=inputs.dtype) | |
* padding_mask | |
) | |
log_determinant_posterior_sum = 0 | |
latents_posterior = random_posterior | |
for flow in self.post_flows: | |
latents_posterior, log_determinant = flow( | |
latents_posterior, padding_mask, global_conditioning=inputs + hidden_states | |
) | |
latents_posterior = torch.flip(latents_posterior, [1]) | |
log_determinant_posterior_sum += log_determinant | |
first_half, second_half = torch.split(latents_posterior, [1, 1], dim=1) | |
log_determinant_posterior_sum += torch.sum( | |
(nn.functional.logsigmoid(first_half) + nn.functional.logsigmoid(-first_half)) * padding_mask, [1, 2] | |
) | |
logq = ( | |
torch.sum(-0.5 * (math.log(2 * math.pi) + (random_posterior**2)) * padding_mask, [1, 2]) | |
- log_determinant_posterior_sum | |
) | |
first_half = (durations - torch.sigmoid(first_half)) * padding_mask | |
first_half = torch.log(torch.clamp_min(first_half, 1e-5)) * padding_mask | |
log_determinant_sum = torch.sum(-first_half, [1, 2]) | |
latents = torch.cat([first_half, second_half], dim=1) | |
for flow in self.flows: | |
latents, log_determinant = flow(latents, padding_mask, global_conditioning=inputs) | |
latents = torch.flip(latents, [1]) | |
log_determinant_sum += log_determinant | |
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (latents**2)) * padding_mask, [1, 2]) - log_determinant_sum | |
return nll + logq | |
else: | |
flows = list(reversed(self.flows)) | |
flows = flows[:-2] + [flows[-1]] # remove a useless vflow | |
latents = ( | |
torch.randn(inputs.size(0), 2, inputs.size(2)).to(device=inputs.device, dtype=inputs.dtype) | |
* noise_scale | |
) | |
for flow in flows: | |
latents = torch.flip(latents, [1]) | |
latents, _ = flow(latents, padding_mask, global_conditioning=inputs, reverse=True) | |
log_duration, _ = torch.split(latents, [1, 1], dim=1) | |
return log_duration | |
class VitsDurationPredictor(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
kernel_size = config.duration_predictor_kernel_size | |
filter_channels = config.duration_predictor_filter_channels | |
self.dropout = nn.Dropout(config.duration_predictor_dropout) | |
self.conv_1 = nn.Conv1d(config.hidden_size, filter_channels, kernel_size, padding=kernel_size // 2) | |
self.norm_1 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps) | |
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2) | |
self.norm_2 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps) | |
self.proj = nn.Conv1d(filter_channels, 1, 1) | |
if config.speaker_embedding_size != 0: | |
self.cond = nn.Conv1d(config.speaker_embedding_size, config.hidden_size, 1) | |
def forward(self, inputs, padding_mask, global_conditioning=None): | |
inputs = torch.detach(inputs) | |
if global_conditioning is not None: | |
global_conditioning = torch.detach(global_conditioning) | |
inputs = inputs + self.cond(global_conditioning) | |
inputs = self.conv_1(inputs * padding_mask) | |
inputs = torch.relu(inputs) | |
inputs = self.norm_1(inputs.transpose(1, -1)).transpose(1, -1) | |
inputs = self.dropout(inputs) | |
inputs = self.conv_2(inputs * padding_mask) | |
inputs = torch.relu(inputs) | |
inputs = self.norm_2(inputs.transpose(1, -1)).transpose(1, -1) | |
inputs = self.dropout(inputs) | |
inputs = self.proj(inputs * padding_mask) | |
return inputs * padding_mask | |
class VitsAttention(nn.Module): | |
"""Multi-headed attention with relative positional representation.""" | |
def __init__(self, config: VitsConfig): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.dropout = config.attention_dropout | |
self.window_size = config.window_size | |
self.head_dim = self.embed_dim // self.num_heads | |
self.scaling = self.head_dim**-0.5 | |
if (self.head_dim * self.num_heads) != self.embed_dim: | |
raise ValueError( | |
f"hidden_size must be divisible by num_attention_heads (got `hidden_size`: {self.embed_dim}" | |
f" and `num_attention_heads`: {self.num_heads})." | |
) | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) | |
if self.window_size: | |
self.emb_rel_k = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling) | |
self.emb_rel_v = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if self.window_size is not None: | |
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, src_len) | |
relative_logits = torch.matmul(query_states, key_relative_embeddings.transpose(-2, -1)) | |
rel_pos_bias = self._relative_position_to_absolute_position(relative_logits) | |
attn_weights += rel_pos_bias | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if output_attentions: | |
# this operation is a bit awkward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to be reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
if self.window_size is not None: | |
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, src_len) | |
relative_weights = self._absolute_position_to_relative_position(attn_probs) | |
rel_pos_bias = torch.matmul(relative_weights, value_relative_embeddings) | |
attn_output += rel_pos_bias | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned aross GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped | |
def _get_relative_embeddings(self, relative_embeddings, length): | |
pad_length = max(length - (self.window_size + 1), 0) | |
if pad_length > 0: | |
relative_embeddings = nn.functional.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0]) | |
slice_start_position = max((self.window_size + 1) - length, 0) | |
slice_end_position = slice_start_position + 2 * length - 1 | |
return relative_embeddings[:, slice_start_position:slice_end_position] | |
def _relative_position_to_absolute_position(self, x): | |
batch_heads, length, _ = x.size() | |
# Concat columns of pad to shift from relative to absolute indexing. | |
x = nn.functional.pad(x, [0, 1, 0, 0, 0, 0]) | |
# Concat extra elements so to add up to shape (len+1, 2*len-1). | |
x_flat = x.view([batch_heads, length * 2 * length]) | |
x_flat = nn.functional.pad(x_flat, [0, length - 1, 0, 0]) | |
# Reshape and slice out the padded elements. | |
x_final = x_flat.view([batch_heads, length + 1, 2 * length - 1]) | |
x_final = x_final[:, :length, length - 1 :] | |
return x_final | |
def _absolute_position_to_relative_position(self, x): | |
batch_heads, length, _ = x.size() | |
# Pad along column | |
x = nn.functional.pad(x, [0, length - 1, 0, 0, 0, 0]) | |
x_flat = x.view([batch_heads, length * (2 * length - 1)]) | |
# Add 0's in the beginning that will skew the elements after reshape | |
x_flat = nn.functional.pad(x_flat, [length, 0, 0, 0]) | |
x_final = x_flat.view([batch_heads, length, 2 * length])[:, :, 1:] | |
return x_final | |
class VitsFeedForward(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.conv_1 = nn.Conv1d(config.hidden_size, config.ffn_dim, config.ffn_kernel_size) | |
self.conv_2 = nn.Conv1d(config.ffn_dim, config.hidden_size, config.ffn_kernel_size) | |
self.dropout = nn.Dropout(config.activation_dropout) | |
if isinstance(config.hidden_act, str): | |
self.act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.act_fn = config.hidden_act | |
if config.ffn_kernel_size > 1: | |
pad_left = (config.ffn_kernel_size - 1) // 2 | |
pad_right = config.ffn_kernel_size // 2 | |
self.padding = [pad_left, pad_right, 0, 0, 0, 0] | |
else: | |
self.padding = None | |
def forward(self, hidden_states, padding_mask): | |
hidden_states = hidden_states.permute(0, 2, 1) | |
padding_mask = padding_mask.permute(0, 2, 1) | |
hidden_states = hidden_states * padding_mask | |
if self.padding is not None: | |
hidden_states = nn.functional.pad(hidden_states, self.padding) | |
hidden_states = self.conv_1(hidden_states) | |
hidden_states = self.act_fn(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = hidden_states * padding_mask | |
if self.padding is not None: | |
hidden_states = nn.functional.pad(hidden_states, self.padding) | |
hidden_states = self.conv_2(hidden_states) | |
hidden_states = hidden_states * padding_mask | |
hidden_states = hidden_states.permute(0, 2, 1) | |
return hidden_states | |
class VitsEncoderLayer(nn.Module): | |
def __init__(self, config: VitsConfig): | |
super().__init__() | |
self.attention = VitsAttention(config) | |
self.dropout = nn.Dropout(config.hidden_dropout) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.feed_forward = VitsFeedForward(config) | |
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
padding_mask: torch.FloatTensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
): | |
residual = hidden_states | |
hidden_states, attn_weights = self.attention( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.layer_norm(residual + hidden_states) | |
residual = hidden_states | |
hidden_states = self.feed_forward(hidden_states, padding_mask) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.final_layer_norm(residual + hidden_states) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
class VitsEncoder(nn.Module): | |
def __init__(self, config: VitsConfig): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList([VitsEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
self.layerdrop = config.layerdrop | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
padding_mask: torch.FloatTensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
# expand attention_mask | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) | |
hidden_states = hidden_states * padding_mask | |
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() | |
for encoder_layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = np.random.uniform(0, 1) | |
skip_the_layer = self.training and (dropout_probability < self.layerdrop) | |
if not skip_the_layer or deepspeed_zero3_is_enabled: | |
# under deepspeed zero3 all gpus must run in sync | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
encoder_layer.__call__, | |
hidden_states, | |
padding_mask, | |
attention_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
padding_mask=padding_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if skip_the_layer: | |
layer_outputs = (None, None) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
hidden_states = hidden_states * padding_mask | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class VitsTextEncoder(nn.Module): | |
""" | |
Transformer encoder that uses relative positional representation instead of absolute positional encoding. | |
""" | |
def __init__(self, config: VitsConfig): | |
super().__init__() | |
self.config = config | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) | |
self.encoder = VitsEncoder(config) | |
self.project = nn.Conv1d(config.hidden_size, config.flow_size * 2, kernel_size=1) | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
padding_mask: torch.FloatTensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = True, | |
) -> Union[Tuple[torch.Tensor], VitsTextEncoderOutput]: | |
hidden_states = self.embed_tokens(input_ids) * math.sqrt(self.config.hidden_size) | |
encoder_outputs = self.encoder( | |
hidden_states=hidden_states, | |
padding_mask=padding_mask, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] if not return_dict else encoder_outputs.last_hidden_state | |
stats = self.project(last_hidden_state.transpose(1, 2)).transpose(1, 2) * padding_mask | |
prior_means, prior_log_variances = torch.split(stats, self.config.flow_size, dim=2) | |
if not return_dict: | |
outputs = (last_hidden_state, prior_means, prior_log_variances) + encoder_outputs[1:] | |
return outputs | |
return VitsTextEncoderOutput( | |
last_hidden_state=last_hidden_state, | |
prior_means=prior_means, | |
prior_log_variances=prior_log_variances, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class VitsPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = VitsConfig | |
base_model_prefix = "vits" | |
main_input_name = "input_ids" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, nn.Conv1d): | |
nn.init.kaiming_normal_(module.weight) | |
if module.bias is not None: | |
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) | |
nn.init.uniform_(module.bias, a=-k, b=k) | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
VITS_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`VitsConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
VITS_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, | |
1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
speaker_id (`int`, *optional*): | |
Which speaker embedding to use. Only used for multispeaker models. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class VitsModel(VitsPreTrainedModel): | |
def __init__(self, config: VitsConfig): | |
super().__init__(config) | |
self.config = config | |
self.text_encoder = VitsTextEncoder(config) | |
self.flow = VitsResidualCouplingBlock(config) | |
self.decoder = VitsHifiGan(config) | |
if config.use_stochastic_duration_prediction: | |
self.duration_predictor = VitsStochasticDurationPredictor(config) | |
else: | |
self.duration_predictor = VitsDurationPredictor(config) | |
if config.num_speakers > 1: | |
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size) | |
# This is used only for training. | |
self.posterior_encoder = VitsPosteriorEncoder(config) | |
# These parameters control the synthesised speech properties | |
self.speaking_rate = config.speaking_rate | |
self.noise_scale = config.noise_scale | |
self.noise_scale_duration = config.noise_scale_duration | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_encoder(self): | |
return self.text_encoder | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
speaker_id: Optional[int] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.FloatTensor] = None, | |
) -> Union[Tuple[Any], VitsModelOutput]: | |
r""" | |
labels (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`, *optional*): | |
Float values of target spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss | |
computation. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import VitsTokenizer, VitsModel, set_seed | |
>>> import torch | |
>>> tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") | |
>>> model = VitsModel.from_pretrained("facebook/mms-tts-eng") | |
>>> inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt") | |
>>> set_seed(555) # make deterministic | |
>>> with torch.no_grad(): | |
... outputs = model(inputs["input_ids"]) | |
>>> outputs.waveform.shape | |
torch.Size([1, 45824]) | |
``` | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None: | |
raise NotImplementedError("Training of VITS is not supported yet.") | |
if attention_mask is not None: | |
input_padding_mask = attention_mask.unsqueeze(-1).float() | |
else: | |
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float() | |
if self.config.num_speakers > 1 and speaker_id is not None: | |
if not 0 <= speaker_id < self.config.num_speakers: | |
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.") | |
if isinstance(speaker_id, int): | |
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device) | |
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1) | |
else: | |
speaker_embeddings = None | |
text_encoder_output = self.text_encoder( | |
input_ids=input_ids, | |
padding_mask=input_padding_mask, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state | |
hidden_states = hidden_states.transpose(1, 2) | |
input_padding_mask = input_padding_mask.transpose(1, 2) | |
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means | |
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances | |
if self.config.use_stochastic_duration_prediction: | |
log_duration = self.duration_predictor( | |
hidden_states, | |
input_padding_mask, | |
speaker_embeddings, | |
reverse=True, | |
noise_scale=self.noise_scale_duration, | |
) | |
else: | |
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) | |
length_scale = 1.0 / self.speaking_rate | |
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale) | |
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long() | |
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length) | |
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device) | |
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1) | |
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype) | |
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length) | |
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1) | |
batch_size, _, output_length, input_length = attn_mask.shape | |
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1) | |
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device) | |
valid_indices = indices.unsqueeze(0) < cum_duration | |
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length) | |
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1] | |
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask | |
# Expand prior distribution | |
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2) | |
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2) | |
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale | |
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True) | |
spectrogram = latents * output_padding_mask | |
waveform = self.decoder(spectrogram, speaker_embeddings) | |
waveform = waveform.squeeze(1) | |
sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates) | |
if not return_dict: | |
outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:] | |
return outputs | |
return VitsModelOutput( | |
waveform=waveform, | |
sequence_lengths=sequence_lengths, | |
spectrogram=spectrogram, | |
hidden_states=text_encoder_output.hidden_states, | |
attentions=text_encoder_output.attentions, | |
) | |