Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/vivit
/modeling_vivit.py
# coding=utf-8 | |
# Copyright 2023 Google AI and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch ViViT model.""" | |
import math | |
from typing import Optional, Set, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings | |
from .configuration_vivit import VivitConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "google/vivit-b-16x2-kinetics400" | |
_CONFIG_FOR_DOC = "VivitConfig" | |
class VivitTubeletEmbeddings(nn.Module): | |
""" | |
Construct Vivit Tubelet embeddings. | |
This module turns a batch of videos of shape (batch_size, num_frames, num_channels, height, width) into a tensor of | |
shape (batch_size, seq_len, hidden_size) to be consumed by a Transformer encoder. | |
The seq_len (the number of patches) equals (number of frames // tubelet_size[0]) * (height // tubelet_size[1]) * | |
(width // tubelet_size[2]). | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.num_frames = config.num_frames | |
self.image_size = config.image_size | |
self.patch_size = config.tubelet_size | |
self.num_patches = ( | |
(self.image_size // self.patch_size[2]) | |
* (self.image_size // self.patch_size[1]) | |
* (self.num_frames // self.patch_size[0]) | |
) | |
self.embed_dim = config.hidden_size | |
self.projection = nn.Conv3d( | |
config.num_channels, config.hidden_size, kernel_size=config.tubelet_size, stride=config.tubelet_size | |
) | |
def forward(self, pixel_values, interpolate_pos_encoding: bool = False): | |
batch_size, num_frames, num_channels, height, width = pixel_values.shape | |
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size): | |
raise ValueError( | |
f"Image image size ({height}*{width}) doesn't match model" | |
f" ({self.image_size[0]}*{self.image_size[1]})." | |
) | |
# permute to (batch_size, num_channels, num_frames, height, width) | |
pixel_values = pixel_values.permute(0, 2, 1, 3, 4) | |
x = self.projection(pixel_values) | |
# out_batch_size, out_num_channels, out_num_frames, out_height, out_width = x.shape | |
# flattens time and space dimensions, transposes to (out_batch_size, flat_tokens, out_num_channels) | |
x = x.flatten(2).transpose(1, 2) | |
return x | |
class VivitEmbeddings(nn.Module): | |
""" | |
Vivit Embeddings. | |
Creates embeddings from a video using VivitTubeletEmbeddings, adds CLS token and positional embeddings. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) | |
self.patch_embeddings = VivitTubeletEmbeddings(config) | |
self.position_embeddings = nn.Parameter( | |
torch.zeros(1, self.patch_embeddings.num_patches + 1, config.hidden_size) | |
) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.config = config | |
def interpolate_pos_encoding(self, embeddings, height, width): | |
""" | |
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher | |
resolution images. | |
Source: | |
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 | |
""" | |
num_patches = embeddings.shape[1] - 1 | |
num_positions = self.position_embeddings.shape[1] - 1 | |
if num_patches == num_positions and height == width: | |
return self.position_embeddings | |
class_pos_embed = self.position_embeddings[:, 0] | |
patch_pos_embed = self.position_embeddings[:, 1:] | |
dim = embeddings.shape[-1] | |
h0 = height // self.config.patch_size | |
w0 = width // self.config.patch_size | |
# we add a small number to avoid floating point error in the interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
h0, w0 = h0 + 0.1, w0 + 0.1 | |
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) | |
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed, | |
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), | |
mode="bicubic", | |
align_corners=False, | |
) | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | |
def forward(self, pixel_values, interpolate_pos_encoding: bool = False): | |
batch_size, num_frames, num_channels, height, width = pixel_values.shape | |
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) | |
cls_tokens = self.cls_token.tile([batch_size, 1, 1]) | |
embeddings = torch.cat((cls_tokens, embeddings), dim=1) | |
# add positional encoding to each token | |
if interpolate_pos_encoding: | |
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) | |
else: | |
embeddings = embeddings + self.position_embeddings | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Vivit | |
class VivitSelfAttention(nn.Module): | |
def __init__(self, config: VivitConfig) -> None: | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " | |
f"heads {config.num_attention_heads}." | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
mixed_query_layer = self.query(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Vivit | |
class VivitSelfOutput(nn.Module): | |
""" | |
The residual connection is defined in VivitLayer instead of here (as is the case with other models), due to the | |
layernorm applied before each block. | |
""" | |
def __init__(self, config: VivitConfig) -> None: | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Vivit | |
class VivitAttention(nn.Module): | |
def __init__(self, config: VivitConfig) -> None: | |
super().__init__() | |
self.attention = VivitSelfAttention(config) | |
self.output = VivitSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads: Set[int]) -> None: | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.attention.query = prune_linear_layer(self.attention.query, index) | |
self.attention.key = prune_linear_layer(self.attention.key, index) | |
self.attention.value = prune_linear_layer(self.attention.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) | |
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
self_outputs = self.attention(hidden_states, head_mask, output_attentions) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class VivitIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
class VivitOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = hidden_states + input_tensor | |
return hidden_states | |
class VivitLayer(nn.Module): | |
"""This corresponds to the EncoderBlock class in the scenic/vivit implementation.""" | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = VivitAttention(config) | |
self.intermediate = VivitIntermediate(config) | |
self.output = VivitOutput(config) | |
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states, head_mask=None, output_attentions=False): | |
self_attention_outputs = self.attention( | |
# in Vivit, layernorm is applied before self-attention | |
self.layernorm_before(hidden_states), | |
head_mask, | |
output_attentions=output_attentions, | |
) | |
attention_output = self_attention_outputs[0] | |
# add self attentions if we output attention weights | |
outputs = self_attention_outputs[1:] | |
# first residual connection | |
hidden_states = attention_output + hidden_states | |
# in Vivit, layernorm is also applied after self-attention | |
layer_output = self.layernorm_after(hidden_states) | |
layer_output = self.intermediate(layer_output) | |
# second residual connection is done here | |
layer_output = self.output(layer_output, hidden_states) | |
outputs = (layer_output,) + outputs | |
return outputs | |
class VivitEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([VivitLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
head_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
layer_head_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class VivitPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class VivitPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = VivitConfig | |
base_model_prefix = "vivit" | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = True | |
_no_split_modules = [] | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv3d)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, nn.Parameter): | |
module.data.normal_(mean=0.0, std=self.config.initializer_range) | |
VIVIT_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it | |
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`VivitConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
VIVIT_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`VivitImageProcessor`]. See | |
[`VivitImageProcessor.preprocess`] for details. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
interpolate_pos_encoding (`bool`, *optional*, `False`): | |
Whether to interpolate the pre-trained position encodings. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class VivitModel(VivitPreTrainedModel): | |
def __init__(self, config, add_pooling_layer=True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = VivitEmbeddings(config) | |
self.encoder = VivitEncoder(config) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.pooler = VivitPooler(config) if add_pooling_layer else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.patch_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. | |
Args: | |
heads_to_prune: | |
dict of {layer_num: list of heads to prune in this layer} | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
interpolate_pos_encoding: bool = False, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> import av | |
>>> import numpy as np | |
>>> from transformers import VivitImageProcessor, VivitModel | |
>>> from huggingface_hub import hf_hub_download | |
>>> np.random.seed(0) | |
>>> def read_video_pyav(container, indices): | |
... ''' | |
... Decode the video with PyAV decoder. | |
... Args: | |
... container (`av.container.input.InputContainer`): PyAV container. | |
... indices (`List[int]`): List of frame indices to decode. | |
... Returns: | |
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). | |
... ''' | |
... frames = [] | |
... container.seek(0) | |
... start_index = indices[0] | |
... end_index = indices[-1] | |
... for i, frame in enumerate(container.decode(video=0)): | |
... if i > end_index: | |
... break | |
... if i >= start_index and i in indices: | |
... frames.append(frame) | |
... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) | |
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): | |
... ''' | |
... Sample a given number of frame indices from the video. | |
... Args: | |
... clip_len (`int`): Total number of frames to sample. | |
... frame_sample_rate (`int`): Sample every n-th frame. | |
... seg_len (`int`): Maximum allowed index of sample's last frame. | |
... Returns: | |
... indices (`List[int]`): List of sampled frame indices | |
... ''' | |
... converted_len = int(clip_len * frame_sample_rate) | |
... end_idx = np.random.randint(converted_len, seg_len) | |
... start_idx = end_idx - converted_len | |
... indices = np.linspace(start_idx, end_idx, num=clip_len) | |
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) | |
... return indices | |
>>> # video clip consists of 300 frames (10 seconds at 30 FPS) | |
>>> file_path = hf_hub_download( | |
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" | |
... ) | |
>>> container = av.open(file_path) | |
>>> # sample 32 frames | |
>>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=1, seg_len=container.streams.video[0].frames) | |
>>> video = read_video_pyav(container=container, indices=indices) | |
>>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400") | |
>>> model = VivitModel.from_pretrained("google/vivit-b-16x2-kinetics400") | |
>>> # prepare video for the model | |
>>> inputs = image_processor(list(video), return_tensors="pt") | |
>>> # forward pass | |
>>> outputs = model(**inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
>>> list(last_hidden_states.shape) | |
[1, 3137, 768] | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class VivitForVideoClassification(VivitPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.vivit = VivitModel(config, add_pooling_layer=False) | |
# Classifier head | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
interpolate_pos_encoding: bool = False, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], ImageClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
Examples: | |
```python | |
>>> import av | |
>>> import numpy as np | |
>>> import torch | |
>>> from transformers import VivitImageProcessor, VivitForVideoClassification | |
>>> from huggingface_hub import hf_hub_download | |
>>> np.random.seed(0) | |
>>> def read_video_pyav(container, indices): | |
... ''' | |
... Decode the video with PyAV decoder. | |
... Args: | |
... container (`av.container.input.InputContainer`): PyAV container. | |
... indices (`List[int]`): List of frame indices to decode. | |
... Returns: | |
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). | |
... ''' | |
... frames = [] | |
... container.seek(0) | |
... start_index = indices[0] | |
... end_index = indices[-1] | |
... for i, frame in enumerate(container.decode(video=0)): | |
... if i > end_index: | |
... break | |
... if i >= start_index and i in indices: | |
... frames.append(frame) | |
... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) | |
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): | |
... ''' | |
... Sample a given number of frame indices from the video. | |
... Args: | |
... clip_len (`int`): Total number of frames to sample. | |
... frame_sample_rate (`int`): Sample every n-th frame. | |
... seg_len (`int`): Maximum allowed index of sample's last frame. | |
... Returns: | |
... indices (`List[int]`): List of sampled frame indices | |
... ''' | |
... converted_len = int(clip_len * frame_sample_rate) | |
... end_idx = np.random.randint(converted_len, seg_len) | |
... start_idx = end_idx - converted_len | |
... indices = np.linspace(start_idx, end_idx, num=clip_len) | |
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) | |
... return indices | |
>>> # video clip consists of 300 frames (10 seconds at 30 FPS) | |
>>> file_path = hf_hub_download( | |
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" | |
... ) | |
>>> container = av.open(file_path) | |
>>> # sample 32 frames | |
>>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=4, seg_len=container.streams.video[0].frames) | |
>>> video = read_video_pyav(container=container, indices=indices) | |
>>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400") | |
>>> model = VivitForVideoClassification.from_pretrained("google/vivit-b-16x2-kinetics400") | |
>>> inputs = image_processor(list(video), return_tensors="pt") | |
>>> with torch.no_grad(): | |
... outputs = model(**inputs) | |
... logits = outputs.logits | |
>>> # model predicts one of the 400 Kinetics-400 classes | |
>>> predicted_label = logits.argmax(-1).item() | |
>>> print(model.config.id2label[predicted_label]) | |
LABEL_116 | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.vivit( | |
pixel_values, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
interpolate_pos_encoding=interpolate_pos_encoding, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifier(sequence_output[:, 0, :]) | |
loss = None | |
if labels is not None: | |
if self.num_labels == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(logits.view(-1), labels.view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return ImageClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |