Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/xlm
/modeling_xlm.py
# coding=utf-8 | |
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
PyTorch XLM model. | |
""" | |
import itertools | |
import math | |
from dataclasses import dataclass | |
from typing import Dict, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import gelu | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
MaskedLMOutput, | |
MultipleChoiceModelOutput, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel, SequenceSummary, SQuADHead | |
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_xlm import XLMConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "FacebookAI/xlm-mlm-en-2048" | |
_CONFIG_FOR_DOC = "XLMConfig" | |
def create_sinusoidal_embeddings(n_pos, dim, out): | |
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]) | |
out.requires_grad = False | |
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) | |
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) | |
out.detach_() | |
def get_masks(slen, lengths, causal, padding_mask=None): | |
""" | |
Generate hidden states mask, and optionally an attention mask. | |
""" | |
alen = torch.arange(slen, dtype=torch.long, device=lengths.device) | |
if padding_mask is not None: | |
mask = padding_mask | |
else: | |
assert lengths.max().item() <= slen | |
mask = alen < lengths[:, None] | |
# attention mask is the same as mask, or triangular inferior attention (causal) | |
bs = lengths.size(0) | |
if causal: | |
attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None] | |
else: | |
attn_mask = mask | |
# sanity check | |
assert mask.size() == (bs, slen) | |
assert causal is False or attn_mask.size() == (bs, slen, slen) | |
return mask, attn_mask | |
class MultiHeadAttention(nn.Module): | |
NEW_ID = itertools.count() | |
def __init__(self, n_heads, dim, config): | |
super().__init__() | |
self.layer_id = next(MultiHeadAttention.NEW_ID) | |
self.dim = dim | |
self.n_heads = n_heads | |
self.dropout = config.attention_dropout | |
assert self.dim % self.n_heads == 0 | |
self.q_lin = nn.Linear(dim, dim) | |
self.k_lin = nn.Linear(dim, dim) | |
self.v_lin = nn.Linear(dim, dim) | |
self.out_lin = nn.Linear(dim, dim) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
attention_head_size = self.dim // self.n_heads | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices(heads, self.n_heads, attention_head_size, self.pruned_heads) | |
# Prune linear layers | |
self.q_lin = prune_linear_layer(self.q_lin, index) | |
self.k_lin = prune_linear_layer(self.k_lin, index) | |
self.v_lin = prune_linear_layer(self.v_lin, index) | |
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1) | |
# Update hyper params | |
self.n_heads = self.n_heads - len(heads) | |
self.dim = attention_head_size * self.n_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward(self, input, mask, kv=None, cache=None, head_mask=None, output_attentions=False): | |
""" | |
Self-attention (if kv is None) or attention over source sentence (provided by kv). | |
""" | |
# Input is (bs, qlen, dim) | |
# Mask is (bs, klen) (non-causal) or (bs, klen, klen) | |
bs, qlen, dim = input.size() | |
if kv is None: | |
klen = qlen if cache is None else cache["slen"] + qlen | |
else: | |
klen = kv.size(1) | |
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' | |
n_heads = self.n_heads | |
dim_per_head = self.dim // n_heads | |
mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen) | |
def shape(x): | |
"""projection""" | |
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2) | |
def unshape(x): | |
"""compute context""" | |
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head) | |
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head) | |
if kv is None: | |
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head) | |
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head) | |
elif cache is None or self.layer_id not in cache: | |
k = v = kv | |
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head) | |
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head) | |
if cache is not None: | |
if self.layer_id in cache: | |
if kv is None: | |
k_, v_ = cache[self.layer_id] | |
k = torch.cat([k_, k], dim=2) # (bs, n_heads, klen, dim_per_head) | |
v = torch.cat([v_, v], dim=2) # (bs, n_heads, klen, dim_per_head) | |
else: | |
k, v = cache[self.layer_id] | |
cache[self.layer_id] = (k, v) | |
q = q / math.sqrt(dim_per_head) # (bs, n_heads, qlen, dim_per_head) | |
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, qlen, klen) | |
mask = (mask == 0).view(mask_reshape).expand_as(scores) # (bs, n_heads, qlen, klen) | |
scores.masked_fill_(mask, torch.finfo(scores.dtype).min) # (bs, n_heads, qlen, klen) | |
weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) # (bs, n_heads, qlen, klen) | |
weights = nn.functional.dropout(weights, p=self.dropout, training=self.training) # (bs, n_heads, qlen, klen) | |
# Mask heads if we want to | |
if head_mask is not None: | |
weights = weights * head_mask | |
context = torch.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head) | |
context = unshape(context) # (bs, qlen, dim) | |
outputs = (self.out_lin(context),) | |
if output_attentions: | |
outputs = outputs + (weights,) | |
return outputs | |
class TransformerFFN(nn.Module): | |
def __init__(self, in_dim, dim_hidden, out_dim, config): | |
super().__init__() | |
self.dropout = config.dropout | |
self.lin1 = nn.Linear(in_dim, dim_hidden) | |
self.lin2 = nn.Linear(dim_hidden, out_dim) | |
self.act = gelu if config.gelu_activation else nn.functional.relu | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
def forward(self, input): | |
return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input) | |
def ff_chunk(self, input): | |
x = self.lin1(input) | |
x = self.act(x) | |
x = self.lin2(x) | |
x = nn.functional.dropout(x, p=self.dropout, training=self.training) | |
return x | |
class XLMPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = XLMConfig | |
load_tf_weights = None | |
base_model_prefix = "transformer" | |
def __init__(self, *inputs, **kwargs): | |
super().__init__(*inputs, **kwargs) | |
def dummy_inputs(self): | |
inputs_list = torch.tensor([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]) | |
attns_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]]) | |
if self.config.use_lang_emb and self.config.n_langs > 1: | |
langs_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]]) | |
else: | |
langs_list = None | |
return {"input_ids": inputs_list, "attention_mask": attns_list, "langs": langs_list} | |
def _init_weights(self, module): | |
"""Initialize the weights.""" | |
if isinstance(module, nn.Embedding): | |
if self.config is not None and self.config.embed_init_std is not None: | |
nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
if isinstance(module, nn.Linear): | |
if self.config is not None and self.config.init_std is not None: | |
nn.init.normal_(module.weight, mean=0, std=self.config.init_std) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0.0) | |
if isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, XLMModel) and self.config.sinusoidal_embeddings: | |
create_sinusoidal_embeddings( | |
self.config.max_position_embeddings, self.config.emb_dim, out=module.position_embeddings.weight | |
) | |
class XLMForQuestionAnsweringOutput(ModelOutput): | |
""" | |
Base class for outputs of question answering models using a `SquadHead`. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided): | |
Classification loss as the sum of start token, end token (and is_impossible if provided) classification | |
losses. | |
start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): | |
Log probabilities for the top config.start_n_top start token possibilities (beam-search). | |
start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): | |
Indices for the top config.start_n_top start token possibilities (beam-search). | |
end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): | |
Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities | |
(beam-search). | |
end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): | |
Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). | |
cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided): | |
Log probabilities for the `is_impossible` label of the answers. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
start_top_log_probs: Optional[torch.FloatTensor] = None | |
start_top_index: Optional[torch.LongTensor] = None | |
end_top_log_probs: Optional[torch.FloatTensor] = None | |
end_top_index: Optional[torch.LongTensor] = None | |
cls_logits: Optional[torch.FloatTensor] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
XLM_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`XLMConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
XLM_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
langs (`torch.LongTensor` of shape `({0})`, *optional*): | |
A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are | |
languages ids which can be obtained from the language names by using two conversion mappings provided in | |
the configuration of the model (only provided for multilingual models). More precisely, the *language name | |
to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the | |
*language id to language name* mapping is in `model.config.id2lang` (dictionary int to string). | |
See usage examples detailed in the [multilingual documentation](../multilingual). | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Length of each sentence that can be used to avoid performing attention on padding token indices. You can | |
also use *attention_mask* for the same result (see above), kept here for compatibility. Indices selected in | |
`[0, ..., input_ids.size(-1)]`. | |
cache (`Dict[str, torch.FloatTensor]`, *optional*): | |
Dictionary string to `torch.FloatTensor` that contains precomputed hidden states (key and values in the | |
attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential | |
decoding. | |
The dictionary object will be modified in-place during the forward pass to add newly computed | |
hidden-states. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class XLMModel(XLMPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
# encoder / decoder, output layer | |
self.is_encoder = config.is_encoder | |
self.is_decoder = not config.is_encoder | |
if self.is_decoder: | |
raise NotImplementedError("Currently XLM can only be used as an encoder") | |
# self.with_output = with_output | |
self.causal = config.causal | |
# dictionary / languages | |
self.n_langs = config.n_langs | |
self.use_lang_emb = config.use_lang_emb | |
self.n_words = config.n_words | |
self.eos_index = config.eos_index | |
self.pad_index = config.pad_index | |
# self.dico = dico | |
# self.id2lang = config.id2lang | |
# self.lang2id = config.lang2id | |
# assert len(self.dico) == self.n_words | |
# assert len(self.id2lang) == len(self.lang2id) == self.n_langs | |
# model parameters | |
self.dim = config.emb_dim # 512 by default | |
self.hidden_dim = self.dim * 4 # 2048 by default | |
self.n_heads = config.n_heads # 8 by default | |
self.n_layers = config.n_layers | |
self.dropout = config.dropout | |
self.attention_dropout = config.attention_dropout | |
assert self.dim % self.n_heads == 0, "transformer dim must be a multiple of n_heads" | |
# embeddings | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim) | |
if config.n_langs > 1 and config.use_lang_emb: | |
self.lang_embeddings = nn.Embedding(self.n_langs, self.dim) | |
self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index) | |
self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps) | |
# transformer layers | |
self.attentions = nn.ModuleList() | |
self.layer_norm1 = nn.ModuleList() | |
self.ffns = nn.ModuleList() | |
self.layer_norm2 = nn.ModuleList() | |
# if self.is_decoder: | |
# self.layer_norm15 = nn.ModuleList() | |
# self.encoder_attn = nn.ModuleList() | |
for _ in range(self.n_layers): | |
self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config)) | |
self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) | |
# if self.is_decoder: | |
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) | |
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout)) | |
self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config)) | |
self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) | |
if hasattr(config, "pruned_heads"): | |
pruned_heads = config.pruned_heads.copy().items() | |
config.pruned_heads = {} | |
for layer, heads in pruned_heads: | |
if self.attentions[int(layer)].n_heads == config.n_heads: | |
self.prune_heads({int(layer): list(map(int, heads))}) | |
# Initialize weights and apply final processing | |
self.post_init() | |
self.register_buffer( | |
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False | |
) | |
def get_input_embeddings(self): | |
return self.embeddings | |
def set_input_embeddings(self, new_embeddings): | |
self.embeddings = new_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.attentions[layer].prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
langs: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
lengths: Optional[torch.Tensor] = None, | |
cache: Optional[Dict[str, torch.Tensor]] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None: | |
bs, slen = input_ids.size() | |
else: | |
bs, slen = inputs_embeds.size()[:-1] | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if lengths is None: | |
if input_ids is not None: | |
lengths = (input_ids != self.pad_index).sum(dim=1).long() | |
else: | |
lengths = torch.tensor([slen] * bs, device=device) | |
# mask = input_ids != self.pad_index | |
# check inputs | |
assert lengths.size(0) == bs | |
assert lengths.max().item() <= slen | |
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0 | |
# assert (src_enc is None) == (src_len is None) | |
# if src_enc is not None: | |
# assert self.is_decoder | |
# assert src_enc.size(0) == bs | |
# generate masks | |
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask) | |
# if self.is_decoder and src_enc is not None: | |
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None] | |
# position_ids | |
if position_ids is None: | |
position_ids = self.position_ids[:, :slen] | |
else: | |
assert position_ids.size() == (bs, slen) # (slen, bs) | |
# position_ids = position_ids.transpose(0, 1) | |
# langs | |
if langs is not None: | |
assert langs.size() == (bs, slen) # (slen, bs) | |
# langs = langs.transpose(0, 1) | |
# Prepare head mask if needed | |
head_mask = self.get_head_mask(head_mask, self.config.n_layers) | |
# do not recompute cached elements | |
if cache is not None and input_ids is not None: | |
_slen = slen - cache["slen"] | |
input_ids = input_ids[:, -_slen:] | |
position_ids = position_ids[:, -_slen:] | |
if langs is not None: | |
langs = langs[:, -_slen:] | |
mask = mask[:, -_slen:] | |
attn_mask = attn_mask[:, -_slen:] | |
# embeddings | |
if inputs_embeds is None: | |
inputs_embeds = self.embeddings(input_ids) | |
tensor = inputs_embeds + self.position_embeddings(position_ids).expand_as(inputs_embeds) | |
if langs is not None and self.use_lang_emb and self.n_langs > 1: | |
tensor = tensor + self.lang_embeddings(langs) | |
if token_type_ids is not None: | |
tensor = tensor + self.embeddings(token_type_ids) | |
tensor = self.layer_norm_emb(tensor) | |
tensor = nn.functional.dropout(tensor, p=self.dropout, training=self.training) | |
tensor *= mask.unsqueeze(-1).to(tensor.dtype) | |
# transformer layers | |
hidden_states = () if output_hidden_states else None | |
attentions = () if output_attentions else None | |
for i in range(self.n_layers): | |
if output_hidden_states: | |
hidden_states = hidden_states + (tensor,) | |
# self attention | |
attn_outputs = self.attentions[i]( | |
tensor, | |
attn_mask, | |
cache=cache, | |
head_mask=head_mask[i], | |
output_attentions=output_attentions, | |
) | |
attn = attn_outputs[0] | |
if output_attentions: | |
attentions = attentions + (attn_outputs[1],) | |
attn = nn.functional.dropout(attn, p=self.dropout, training=self.training) | |
tensor = tensor + attn | |
tensor = self.layer_norm1[i](tensor) | |
# encoder attention (for decoder only) | |
# if self.is_decoder and src_enc is not None: | |
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache) | |
# attn = nn.functional.dropout(attn, p=self.dropout, training=self.training) | |
# tensor = tensor + attn | |
# tensor = self.layer_norm15[i](tensor) | |
# FFN | |
tensor = tensor + self.ffns[i](tensor) | |
tensor = self.layer_norm2[i](tensor) | |
tensor *= mask.unsqueeze(-1).to(tensor.dtype) | |
# Add last hidden state | |
if output_hidden_states: | |
hidden_states = hidden_states + (tensor,) | |
# update cache length | |
if cache is not None: | |
cache["slen"] += tensor.size(1) | |
# move back sequence length to dimension 0 | |
# tensor = tensor.transpose(0, 1) | |
if not return_dict: | |
return tuple(v for v in [tensor, hidden_states, attentions] if v is not None) | |
return BaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions) | |
class XLMPredLayer(nn.Module): | |
""" | |
Prediction layer (cross_entropy or adaptive_softmax). | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.asm = config.asm | |
self.n_words = config.n_words | |
self.pad_index = config.pad_index | |
dim = config.emb_dim | |
if config.asm is False: | |
self.proj = nn.Linear(dim, config.n_words, bias=True) | |
else: | |
self.proj = nn.AdaptiveLogSoftmaxWithLoss( | |
in_features=dim, | |
n_classes=config.n_words, | |
cutoffs=config.asm_cutoffs, | |
div_value=config.asm_div_value, | |
head_bias=True, # default is False | |
) | |
def forward(self, x, y=None): | |
"""Compute the loss, and optionally the scores.""" | |
outputs = () | |
if self.asm is False: | |
scores = self.proj(x) | |
outputs = (scores,) + outputs | |
if y is not None: | |
loss = nn.functional.cross_entropy(scores.view(-1, self.n_words), y.view(-1), reduction="mean") | |
outputs = (loss,) + outputs | |
else: | |
scores = self.proj.log_prob(x) | |
outputs = (scores,) + outputs | |
if y is not None: | |
_, loss = self.proj(x, y) | |
outputs = (loss,) + outputs | |
return outputs | |
class XLMWithLMHeadModel(XLMPreTrainedModel): | |
_tied_weights_keys = ["pred_layer.proj.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.transformer = XLMModel(config) | |
self.pred_layer = XLMPredLayer(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.pred_layer.proj | |
def set_output_embeddings(self, new_embeddings): | |
self.pred_layer.proj = new_embeddings | |
def prepare_inputs_for_generation(self, input_ids, **kwargs): | |
mask_token_id = self.config.mask_token_id | |
lang_id = self.config.lang_id | |
effective_batch_size = input_ids.shape[0] | |
mask_token = torch.full((effective_batch_size, 1), mask_token_id, dtype=torch.long, device=input_ids.device) | |
input_ids = torch.cat([input_ids, mask_token], dim=1) | |
if lang_id is not None: | |
langs = torch.full_like(input_ids, lang_id) | |
else: | |
langs = None | |
return {"input_ids": input_ids, "langs": langs} | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
langs: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
lengths: Optional[torch.Tensor] = None, | |
cache: Optional[Dict[str, torch.Tensor]] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MaskedLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
langs=langs, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
lengths=lengths, | |
cache=cache, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
output = transformer_outputs[0] | |
outputs = self.pred_layer(output, labels) # (loss, logits) or (logits,) depending on if labels are provided. | |
if not return_dict: | |
return outputs + transformer_outputs[1:] | |
return MaskedLMOutput( | |
loss=outputs[0] if labels is not None else None, | |
logits=outputs[0] if labels is None else outputs[1], | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
class XLMForSequenceClassification(XLMPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.transformer = XLMModel(config) | |
self.sequence_summary = SequenceSummary(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
langs: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
lengths: Optional[torch.Tensor] = None, | |
cache: Optional[Dict[str, torch.Tensor]] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
langs=langs, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
lengths=lengths, | |
cache=cache, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
output = transformer_outputs[0] | |
logits = self.sequence_summary(output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
class XLMForQuestionAnsweringSimple(XLMPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.transformer = XLMModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
langs: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
lengths: Optional[torch.Tensor] = None, | |
cache: Optional[Dict[str, torch.Tensor]] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
start_positions: Optional[torch.Tensor] = None, | |
end_positions: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
langs=langs, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
lengths=lengths, | |
cache=cache, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = transformer_outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + transformer_outputs[1:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
class XLMForQuestionAnswering(XLMPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.transformer = XLMModel(config) | |
self.qa_outputs = SQuADHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
langs: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
lengths: Optional[torch.Tensor] = None, | |
cache: Optional[Dict[str, torch.Tensor]] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
start_positions: Optional[torch.Tensor] = None, | |
end_positions: Optional[torch.Tensor] = None, | |
is_impossible: Optional[torch.Tensor] = None, | |
cls_index: Optional[torch.Tensor] = None, | |
p_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, XLMForQuestionAnsweringOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels whether a question has an answer or no answer (SQuAD 2.0) | |
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the classification token to use as input for computing plausibility of the | |
answer. | |
p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be | |
masked. 0.0 mean token is not masked. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, XLMForQuestionAnswering | |
>>> import torch | |
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-mlm-en-2048") | |
>>> model = XLMForQuestionAnswering.from_pretrained("FacebookAI/xlm-mlm-en-2048") | |
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze( | |
... 0 | |
... ) # Batch size 1 | |
>>> start_positions = torch.tensor([1]) | |
>>> end_positions = torch.tensor([3]) | |
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) | |
>>> loss = outputs.loss | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
langs=langs, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
lengths=lengths, | |
cache=cache, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
output = transformer_outputs[0] | |
outputs = self.qa_outputs( | |
output, | |
start_positions=start_positions, | |
end_positions=end_positions, | |
cls_index=cls_index, | |
is_impossible=is_impossible, | |
p_mask=p_mask, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return outputs + transformer_outputs[1:] | |
return XLMForQuestionAnsweringOutput( | |
loss=outputs.loss, | |
start_top_log_probs=outputs.start_top_log_probs, | |
start_top_index=outputs.start_top_index, | |
end_top_log_probs=outputs.end_top_log_probs, | |
end_top_index=outputs.end_top_index, | |
cls_logits=outputs.cls_logits, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
class XLMForTokenClassification(XLMPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = XLMModel(config) | |
self.dropout = nn.Dropout(config.dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
langs: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
lengths: Optional[torch.Tensor] = None, | |
cache: Optional[Dict[str, torch.Tensor]] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
langs=langs, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
lengths=lengths, | |
cache=cache, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class XLMForMultipleChoice(XLMPreTrainedModel): | |
def __init__(self, config, *inputs, **kwargs): | |
super().__init__(config, *inputs, **kwargs) | |
self.transformer = XLMModel(config) | |
self.sequence_summary = SequenceSummary(config) | |
self.logits_proj = nn.Linear(config.num_labels, 1) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
langs: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
lengths: Optional[torch.Tensor] = None, | |
cache: Optional[Dict[str, torch.Tensor]] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MultipleChoiceModelOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., | |
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See | |
`input_ids` above) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
langs = langs.view(-1, langs.size(-1)) if langs is not None else None | |
inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
if lengths is not None: | |
logger.warning( | |
"The `lengths` parameter cannot be used with the XLM multiple choice models. Please use the " | |
"attention mask instead." | |
) | |
lengths = None | |
transformer_outputs = self.transformer( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
langs=langs, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
lengths=lengths, | |
cache=cache, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
output = transformer_outputs[0] | |
logits = self.sequence_summary(output) | |
logits = self.logits_proj(logits) | |
reshaped_logits = logits.view(-1, num_choices) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
output = (reshaped_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return MultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |